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A Fundamental Structure of the General Theory of
Overload Quasi-Static Linear Gradient Chromatography

TSUTOMU KAWASAKI

CHROMATOGRAPHIC RESEARCH LABORATORY
KOKEN BIOSCIENCE INSTITUTE
3-5-18 SHIMO-OCHIAI, SHINJUKU-KU, TOKYO 161, JAPAN

Abstract

The earlier theory of overload linear gradient chromatography developed over
15 years ago by using an ideal molecular model with infinite dimensions is
rearranged and improved in order for it to be compatible with the new concepts
that are involved in the general theory of gradient chromatography developed
recently. By applying the ideal molecular model, the structure of the overload
chromatographic theory is considerably reduced, emphasizing the fundamental
structure. Chromatograms with a shape close to a right-angled triangle with
tailing are often experienced under overload condition. On the basis of the
present theory, this type of chromatogram can be explained in terms of the
occurrence of a quasi-crystalline phase of the adsorbed molecules that are
repulsively interacting with one another on the adsorbent surfaces in the
column.

INTRODUCTION

Earlier (I-3), a general theory of quasi-static linear gradient chro-
matography was developed; this is schematically outlined in the Ref. 3
Appendix. The theory is unique in that it involves several novel concepts:
“two points of view on gradient chromatography,” “abstract flux,”
“universal differential equation for any chromatography,” etc. The scope
of this theory is limited, however, to the simplest case when the mutual
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interaction among sample molecules is negligible. Therefore, the theory
is valid under small sample load conditions only.

With preparative chromatography, large amounts of sample molecules
are often loaded per unit cross-sectional area of the column, realizing a
so-called overload chromatographic condition. Under this condition,
mutual molecular interactions occurring in the stationary phase can be
assumed to play an important role; the mutual interaction occurring in
the mobile phase is negligible since the molecular concentration in
solution is usually low. The approximate theory of quasi-static linear
gradient chromatography in which account is taken of the mutual
molecular interaction occurring in the stationary phase was developed in
Refs. 4-6. The main part (4, 6) of this theory is limited to the case when all
the molecules have the same dimensions and the same shape, however.
The relationship between the small load theory (/-3) and the overload
theory (4-6) is argued in detail in Ref. 3.

The study of overload gradient chromatography goes back to 15 years
ago when a theory began by applying an ideal molecular model with
infinite dimensions (7-10); the effect of longitudinal diffusion in the
column is neglected in this theory. The purpose of the present work is to
rearrange and improve the initial overload theory (7-10) in order for it to
be compatible with the new concepts that are involved in both the recent
theory of gradient chromatography (/-6) and the recently specified
adsorption and desorption model (//-13). By applying the ideal mole-
cular model with infinite dimensions, the structure of the overload
chromatographic theory is considerably reduced, emphasizing the
fundamental structure. The present work will therefore promote a better
understanding of the overload theory developed in Refs. 4-6.

In the chromatographic theory (/-10), a parameter Bj, plays a
fundamental role; this represents the partition of molecules (of the
chromatographic component p’ under consideration) in the mobile
phase in an elementary volume in the column, or the ratio of the amount
of molecules in the mobile phase to the total amount in that elementary
volume. It can be considered (1/-13) that By, is a function of (a) molarity,
m, of the gradient element in the interstice in the elementary volume
under consideration, and (b) molecular densities 8, 85, .. ., 6, on the
adsorbent surface for all the components 1, 2,..., p of the sample
mixture, including the component p’ under consideration; with small
sample loads, By, is a function of only (a).

Over 18 years ago, in order to explain the dependence of B,, upon m
with hydroxyapatite (HA) chromatography carried out in an aqueous
system, a competition model was introduced (/4), and this model was
applied in studies in Refs. /-10. The model states that adsorbing sites are
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arranged in some manner on the surfaces of the packed particles (HA
crystals) in the column; sample molecules (with adsorption groups) and
the gradient element (i.e., particular ions from the buffer constituting the
molarity gradient) compete for adsorption onto the sites. A competing ion
covers a single site when it is adsorbed whereas a sample molecule, in
general, covers plural sites (//-14). The competition model will be
applicable to not only HA chromatography but also ion-exchange
chromatography. In Ref. /3 another qualitative model was proposed to
explain the dependence of B, upon m with both reversed-phase
chromatography and HA chromatography carried out in an organic
solvent system. In the present work, the competition model is applied.
The conclusion attained in the present work will be valid, at least
partially, if the competition model is replaced by another, however.

Experimental verifications of the theory under small load (/-3) and
overload (4-6) conditions are given for HA chromatography in Refs. 15
and 16 and in Ref. 17, respectively.

THEORETICAL

(A) Static Part: Partition B, for ideal Molecules with
Infinite Dimensions

On the basis of the competition model (Introduction Section), partition
By, can be represented by Eq. (26) in Ref. 13, which can be rewritten
as

B('D')= -X'(p) (p,= 1’23"'50) (1)
1+Y
)
where
_Ep+hkTlaty  E4(®) lnphy®) Inp
xigkT Xiy Xty X(e)
Y = e * T (om + 1)
(2)
0= (9(1), 9(2), ey 9(9)) (3)

and
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The physical meanings of the symbols involved in Egs. (1)-(4) are:

p' = a molecular component of the sample mixture, representing one
of the components 1,2,..., p.

x(y, = number of adsorbing sites on the adsorbent surface on which
the adsorption of competing ions is impossible due to the
presence of an adsorbed p’ molecule. Therefore, x, is the
parameter measuring dimensions of a p’ molecule.

E, = absolute value of the interaction energy with adsorbing site(s)
per molecule of component p’ occurring provided the molecule
is isolated on the adsorbent surface.

T, = configurational entropy factor per molecule of component p’
occurring provided the molecule is isolated on the adsorbent
surface. (For details, see Refs. 11 and 12.)

n, = total number of adsorbing sites on the adsorbent surface in the
elementary volume of the column.

ng, = total number of the molecules of component p’ that are
adsorbed on the adsorbent surface in the elementary volume of
the column.

6., = molecular density for component p’ on the adsorbent surface.

E%,(0) = mutual interaction energy per molecule of component p’ on the
adsorbent surface; E¢, > 0, EY,,) = 0, and EJ,, < 0 represent the
cases with repulsive, no, and attractive interactions, respectively.
(For details, see Refs. 11 and 12.)

Pi&(0) = geometrical interaction factor for a molecule of component p’
on the adsorbent surface. pf(0) takes finite positive values,
tending to 1 and 0 when Xf._,0,- tends to 0 and the maximum
value, respectively. (For details, see Refs. 11 and 12.)

B = positive constant that is proportional to the ratio of n, to the
interstitial volume of the column element. (For details, see Ref.
13.)

¢ = positive constant representing the property of competing ions.
(For details, see Ref. 13.)

m = molarity of competing ions, constituting a linear gradient in the
total column.
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In the case of ideal molecules of infinite dimensions with properties:

X(py ® © &)
Ey) + kT Int,, = O(x(,) (6)

and
E§(0) = O(x(p) )

Equation (2) reduces to

_Ep +kTinz,, ‘ E5(@) _Inpf(6)
Xk T Xk T Xioh

Yoy=e (pm + 1) X (pm + 1)

(3)

(B) Some Approximations and Preliminary Considerations

In order to simplify the argument, we introduce the following
approximations:

(a) Both E§; and p, are functions of Zf.. 0,

(b) The maximum possible value, [Z8.0 ;" max, Of Tf<(0(r is inde-
pendent of the ratio among 6, 6y, . . . , 6.

(c) The ratio between Ef;, and xy, (i.€., E%y/x(,) is independent of the
p’ value.

(d) xg, is equal to the number of adsorbing sites on the adsorbent
surface on which the adsorption of any type of sample molecule is
impossible due to the presence of an adsorbed p’ molecule.

Under these approximations, writing

Xen = ————— &)
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and
p
X = 2 X (10)
o
we have
0< <1 (11)
Further, writing
E&H(X)
A4 = — 5= (12)

(")

and

Ey + kTIn<g,

N = , (13)
*? X(p")
Eq. (8) can be represented as
_ N1 800 _ Inpf{x)
Yo = e kT o (em + 1) (14)

In the above, the function {(x) is characterized by the relationships

xlirpo Cx)=0 (15)
and
,ﬁ?_‘o ) =1 (16)

and, in many instances, it can be assumed that { increases monotonically
with an increase of y; this assumption will be used in all the arguments
below.

fi is a constant, and, if repulsive (attractive) interactions occur among
sample molecules on the adsorbent surface, | > 0 (1} < 0); in the absence
of the energetical interactions, f = 0.
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The function p;,(x), which takes only positive values, is characterized
by the relationships

lim p&\(x) =1 (17)
x—++0

and
lim p(x) = 0 (18)
x—=1-0

[cf. the explanation of pf;(0) in Section A].
Let m{,, be the m value occurring when both ¥, = 1 and y - +0in Eq.
(14). By using both Eqgs. (15) and (17), m{,, can be represented as

e Yk —
m?p,, = —(p‘—‘ (19)

Finally, let rf1,, be the m value occurring when both Y, =1 and y —»
1 — 0 in Eq. (14). i1, can be represented as

M) ~N/AT _ |
My = e (20)

Equation (20) has been derived by using both Eqgs. (16) and (18), taking
into account the consideration that lim,_,_, In pf(x) = — but that the
term [In p&,(0)l/x(y) in Eq. (14) continues to take an infinitesimal value
until x just attains unity since x¢,, = ® (Eq. 5). [It should be noted that,
due to its physical meaning, 1, > 0 whereas, in Eq. 20, m, < 0 if
Ny < . This means that, in the case of repulsive interactions when > 0,
the situation where both relationships Y, = 1 and y — 1 — 0 are fulfilled
is realized only if ng, > (> 0).]

(C) Priority of the Adsorption among Different Molecular Species

Let y;,,(m) be the adsorption capacity of the adsorbent realized in the
presence (on the adsorbent surface) of molecular species p' when the molarity,
m, of competing ions is given, i.e., the maximum possible value of y that
can be realized in the presence (on the adsorbent surface) of species p’
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when m is given. We also define 3, as the total amount of species p’ in
the elementary volume of the column expressed in such a way that
Q(, = 1 when the amount is equal to that which just saturates the total
surfaces of the adsorbent in the column element (i.e., the amount that just
realizes the state of x = 1). We discuss below the priority of the adsorption
among different molecular species occurring in different cases when m is
given.

{I} The case when xy(m) = xu(m) = - -+ = x,(m) and [Ey) + kT In
'C(pr)]/[E(puH) + kT In t(p’+l)] > l(p' = 1, 2, ey P 1) Ifzg'ax Q(p') < X(l])(m) =
X(m) = - -+ = x(m), then, due to the physical meaning of (- (m) (p” =
1,2,...,p), all the molecules are adsorbed. If Z._; Q) > x(1y(m) = x((m)
= -+ - - = y(m), then the adsorption occurs according to priority in the
order of species 1,2, ..., p. Thus, due to the assumption, E, + kT In t,
= (E@+y + kT In 1, ) = o (cf. Egs. 5 and 6); this means that, out of the
total amount Zf_, Qs of the molecules, ZH2] Q, + k- Q) [= xy(m) =
Xo(m) =+« - = y(m); 0 < x < 1] are adsorbed and that the rest of the
molecules [(1 — x) - Q) + Zfo i1y Q)] is in solution where p’ = 1,2,...,
p and the sums Z., Q, and Z5_ ., Q- are both defined to be zero.
Figure 1 represents schematically the aspect of preferential adsorptions
among five molecular species occurring when X, Q) > xym) =
Xa(m) = (M) = xa(m) = x5(m), p' = 3and 0 < x < 1. It can be seen in
Fig. 1 that species 1 and 2 and some part of species 3 are preferentially
adsorbed; the other part of species 3 and species 4 and 5 are in
solution.

[I1] The case when x(y(m) > xp(m) > - -« > yu(m): If Zh | Q) <
Xiw(m), then, due to the physical meaning of y,-(m) (p" = 1,2,..., p), all
the molecules are adsorbed. If Z..; Q, > x(,(m), then the adsorption
can be considered to occur according to priority in the order of species 1,
2,..., p. Thus, if iy (m) > Ty Qpry > Ap(m) [Where p’ = 1,2,..., p,
and yj(m) is defined to be ], then, out of the total amount Zf._, Q- of
the molecules, Z52} Qe + Z82L Qi + k- Qe [= Kim(m); p* = p', 0" +
1,...,pand 0 <« < 1} would be adsorbed, and the rest of the molecules
[(1 = x) - Qo) + Z8_es1 Q] Would be in solution where the sums Z..,
Qi 02y Q4 and b, O, are defined to be zero. Figure 2 represents
schematically the aspect of preferential adsorptions among five mole-
cular species occurring when y(,(m) > x(m) > Zo; Qi > Yio(m) >
Xio(m) > xs(m) (i.e., when p’ = 3) and when several p* and « values are
given. Figure 2 can be compared with Fig. 1.

(IIT] The general case when x(m) > xy(m) > - - - > x(m): If X (m)
= Yp+n(m), it is possible to number the molecular species in such a way
that the relationship [E, + kT In v))/[Eyyyy + kT In 1] > 1is
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FIG. 1. Schematic representation of the aspect of preferential adsorptions among five

molecular species occurring when Ep 1S > xyim) = x(z)(m) x3Hm) = Yalm) =

Xs(m), ' = 3 and 0 <« < L. The histogram shows a pile (Ep 1§Yn) of the molecules of the

five species, and the part of the histogram drawn with oblique lines shows the molecules
that are adsorbed on the adsorbent surface.

fulfilled. By applying this numbering method, it can be concluded on the
basis of the arguments made in both paragraphs [I] and [II] that if
Zhain < Xp(m), then all the molecules are adsorbed; if Zf-., Q) >
X»(m), then the adsorption occurs according to priority in the order of
species 1,2,..., p.
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F1G. 2. Schematic representation of the aspect of preferenual adsorptions among five
molecular specnes occurring when 1(1)(’”) > Xiaylm) > Zp ,lﬂ(pv) > X3)m) > xaym) > xs(m)
(i, when p’' = 3) and when several p* and « values are given. A histogram shows a pile
(Ef,-=|ﬂ(p~)) of the molecules of the five species, and the part of the histograms drawn with
oblique lines shows the molecules that are adsorbed on the adsorbent surface.
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(D) Representations of the Adsorption Capacity x;,,(m)

The adsorption capacity x(m) that has been introduced in Section (C)
can be represented for the respective cases of repulsive (§ > 0), no ( = 0),
and attractive (f§ < 0) molecular interactions as follows.

[I] The case of repulsive (f > 0) interactions:

X(pn(m) = 1 0 <m <r,)

Xig(m) = c-'[ :

(2D

0 0
omin + 1 om:, + 1
= c—'[ln ) In — ] ey < M < MYy))

om + 1 o,y + 1

Xn(m) =0 (m > miy)

where (! represents the inverse function of &

Proof. When 1 > 0, then 11, < m{y, (Eqs. 19 and 20). Let us first give a
proof of the first equation in Eq. (21). Thus, when 0 <m <y, if x < 1,
then it can be concluded from Eq. (14) that Y, < 1 since [In pg,(0)]/x(n =
0 (cf. the explanation of Eq. 20). This means that By, = 0 (Eq. 1; cf. Eq.
5), or that all the p’ molecules are adsorbed. It follows from this that the
state of y = 1 is attainable in the presence of molecular species p’, and the
first equation in Eq. (21) is derived. Let us give a proof of the second
equation in Eq. (21). Thus, it can be concluded from Eq. (14) that, when
both i, < m < m{,yand Y, = 1, then x, < 1; this means that [In p(x)]/
X(y = 0 (cf. the argument in Section B) and that the relationship:

_ mp')“ﬂ'§(l)
e kT (om+1)=1 (22)

is realized. y(m) in the second equation in Eq. (21) represents x
fulfilling Eq. (22). Therefore, if x;,(m) in the second equation in Eq. (21)
is substituted into x in Eq. (14), then Y, = 1 is obtained. If, in Eq. (14), the
x value is increased from yi,(m) while fixing the m value, then Y,
increases from unity, and we have B, =1 (Eq. 1; cf. Eq. 5). To the
contrary, if, in Eq. (14), the x value is decreased from y,,(m) while fixing
the m value, then Y|, decreases from unity, and we have By, = 0 (Eq. 1; cf.
Eq. 5). This means that, if x increases from x(,,(m), the desorption of p'
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molecules occurs (since By, = 1). If x decreases from yy(m) due to the
desorption, however, the adsorption of p’ molecules begins (since By, =
0). It can therefore be concluded that x,,(m) in the second equation in Eq.
(21), in fact, has the physical meaning of the adsorption capacity when
Mgy < m < miy,. On the basis of the second equation in Eq. (21), it can be
shown that, when m — i, + 0, then xi,y(m) — 1 — 0; this means that
X(»(m) given by the second equation in Eq. (21) is continuous with y,,(m)
given by the first equation in Eq. (21), from which it can be concluded
that y;,,(m) in the second equation in Eq. (21) has the physical meaning
of the adsorption capacity even when i, < m < mgy,. It is easy to derive
the right-hand side term from the intermediate term in the second
equation in Eq. (21) by using both Eqgs. (19) and (20). Finally, let us give a
proof of the third equation in Eq. (21). Thus, it can be concluded from Eq.
(14) that, when m > my,, then Y, > 1; this means that Bf,, = 1 (Eq. 1; cf.
Eq. 5) and that the third equation in Eq. (21) is fulfilled. On the basis of
the second equation in Eq. (21), it can be shown that, when m — m{,, — 0,
then x,y(m) = + 0; this means that x,,,(m) given by the second equation
in Eq. (21) is continuous with x;,(m) given by the third equation in Eq.
(21). It can therefore be concluded that the third equation in Eq. (21) is
fulfilled even when m > mgy, Q.E.D.
[II] The case of no (i} = 0) interactions:

Xien(m) =1 (0 <m < mi,)
(23)
X(py(m) =0 (m > m?p’))

Proof When # = 0, then 1, = m{y, (Eqs. 19 and 20). It can therefore be
considered that the case of no interactions can be represented as an
extreme case of repulsive interactions occurring when the 1, value
approaches the m(,, value. This consideration leads to Eq. (23). Equation
(23) can also be derived as an extreme case of attractive interactions.
QED.

[III} The case of attractive (f < 0) interactions:

X(pn(m) = 1 0 <m < miy); ormiy, <m <y, and i Q)
p" =1
> ¢! for at least one of all possible p values)

. (24)
X«(lp')(m) =0 (m((]p') < m < ’ﬂ(p') and i n(pu)< c-l for the
P =]
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maximum possible p value; orm > ri,))

where {™! is an abbreviation for

c_l[n(p,, - le;l((pm + 1)]

or

m’. + 1 md. + 1
C"[lnq) ) /ln‘P ®") ]
om + 1 o, + 1

(cf. Eq. 21), and p represents molecular species fulfilling both relation-
ships p > p’ and m < ry;); the molecular adsorption occurs according to
priority in the orderof 1,2,..., p

Proof. When 1| < 0, then m{y;, < 1, (Egs. 19 and 20). On the basis of the
argument similar to that made for the case of repulsive interactions when
0 <m < iy, (see paragraph [I]), it can be concluded that, when 0 < m <
mgy, then x(,(m) = 1. Similarly, on the basis of the argument similar to
that made for the case of repulsive interactions when m > m, (see
paragraph (1), it can be concluded that, when m > iy, then xi,(m) =
When m(,, < m < i, by substituting ™' into y in Eq. (14), Y, = 1 is
obtained (cf. the argument in paragraph [I] for the case of repulsive
interactions when ;) < m < m{y,). In contrast to the case of repulsive
interactions, however, if, in Eq. (14), the x value is increased from (!
while fixing the m value, then Y, decreases from unity, and we have Bjy,
= 0 (Eq. I; cf. Eq. 5). If the x value is decreased from {~! while fixing the m
value, then Y|, increases from unity, and we have B, = 1 (Eq. 1; cf. Eq.
5). It can therefore be concluded that, if  exceeds the ™! value, then the
adsorption of p’ molecules continues until x attains the maximum value
of unity; this means that y;,,(m) = 1. Unless x exceeds the {~! value, the
adsorption of p’ molecules does not occur at all; this means that y;,,(m) =
0. By defining molecular species 1, 2,..., p so that the priority of the
adsorption be in this order, speciesp (p = p',p'+ 1,p' +2,...) generally
exist which fulfill the relationshlp m < my;, at a given m; the given m
fulfills the relationship of mg,, <m < i, (cf Fig A3 in Appendix I). This
means that, if the relatlonshlp . > § s fulfilled for at least one of
all possible p values, then x‘p ,(m) = 1. If the relatlonshlp = i€ < &7 is
fulfilled for all possible p values, then y,(m) = 0; in order for the
relationship of Z%.. Q- < {' to be fulfilled for all possible p values, it is
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sufficient that the same relationship be fulfilled for the maximum
possible p value. Q.E.D.

(E) Relative and Approximate Expressions of y/,,(m)

Let us introduce relative parameters:

m
mg,
0
0 m
L= ) (26
Y m?l) )
. o)
Py = (27)
) md,,
UITS)
W, = — 28
0" o) (28)
and
z=1 (29)
Mo

By using both Egs. (19) and (20), y{,, and ¥, can be represented as

0 _ ey — ((pm?l) + D)¥er—1 _

©) = T — | om’ R Wi (30)
and
B e VON ot
respectively.

We write below the relative expressions y,(y) of x(m) for the
respective cases of repulsive, no, and attractive molecular interactions;
the approximate expression of x;,,(») (occurring when the extreme right-
hand sides of both Egs. 30 and 31 are realized) is also shown (see the
second equation in Eq. 32):
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[I] The case of repulsive (4 > 0 or E > 0) interactions:

Xm@) =1 (0<y <P,y
Il = 1)y 4 1]
i) = 19— /6T
p
s (32)
- In(pmd,y + 1)
_ ¢ Y In(emd, + 1)
af ey =y
=g l[%] Py <Y <¥im)
X)) = 0 v >y?p’))
[IT] The case of no (§ = 0 or E = 0) interactions:
X('p’)(y) =1 (0 <y <y?p’))
(33)

X)) =0 O > ¥

[III] The case of attractive (f < 0 or & < 0) interactions:

X)) = 1 (0<y < J’?p'ﬂ OTJ’?p') <y <Jy)and ,iln(p') > ¢!
oz

for at least one of all possible p values)
(34)

Xp®@) =0 0oy <y <P, and pﬁ:ln(p-, < ¢! for the maximum

possible p value; ory > )

where p represents molecular species fulfilling both relationships p > p’
and y <)

In Appendix I, the approximate y,,(y)’s in Eqgs. (32)-(34) are diagram-
matically represented assuming that the function {(x) (Eq. 12) can be
written as {() = \/Z (for this assumption, see Discussion Section A).
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(F) Representations of B, in Terms of y;,,(m)

Provided the molecular adsorption occurs according to priority in the
order of 1, 2,..., p, the partition By, (where p’ = 1, 2,..., p) can be
represented in terms of x;,, as

o
By =0 I:le Xy < X('p’)(m)]

”
By = Yo [pzl Xon = Xfp')(m)] (35)

By =1 LZI Xipm > X('p')(m)]
in which
0 <y <1 (36)
By, can also be represented as
Bi,=0 Y <0)
By =ve (O<yyn<1) (37)
By, =1 (Y > 1)

in which

o
!
pzl n(p") - x(o')(m)
Yo =
n(p')

(38)

In Appendix I, By,)’s for both single and three component systems are
illustrated as functions of y for the three cases of repulsive, no, and
attractive molecular interactions. For the calculation, the approximate
expressions of Eqs. (32)-(34) (cf. Egs. 30 and 31) and Eqgs. (37) and (38)
have been used, where it is assumed that {(y) = \/Z (cf. Discussion
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Section A). In the case of a single component system, the subscript (p’) is
deleted from any parameter.

(G) Dynamic Part: Fundamental Differential Equation in the
Absence of Longitudinal Diffusion in the Column and the
Calculation of the Chromatogram on the Basis of the Equation

For a mixture of components, 1, 2,..., p, the chromatographic
behavior of the molecules both in the presence of mutual molecular
interactions on the adsorbent surface and in the absence of longitudinal
diffusion in the column can be represented by using simultaneous partial
differential equations (Eq. 1 in Ref. 6) as

B ’ (m ,X)
a[_L_ -x(.,')]

- B‘”";T’X) a;"‘;" =0 (p'=1,2,...p) (39)
where
By(m,x) = Biyy(m,x) (40)
and
s=g''L'=g-L (41)

In Eq. (39), B,y(m.x) represents the partition of sample molecules (of the
chromatographic component p’ under consideration) in the mobile
phase in the vertical section of the column; this is equal to the partition
B(,(m.x) occurring in an elementary volume that belongs in the vertical
section under consideration provided there is no longitudinal diffusion
in the column (see Eq. 40). (For the reason why B, and B, can be
represented as functions of m and y, see Section B.) In Eq. (41),g" and g
represent the slope of the molarity gradient of competing ions in the
column expressed as the increase in molarity per unit interstitial volume
and unit length of the column, measured from the outlet to the inlet,
respectively; L' and L represent the total interstitial volumes and the total
length of the column, respectively. (In some instances, L’ and L represent
the distance from the inlet of the column of any longitudinal position of
the column, expressed in units of volume and length, respectively.) s (Eq.
41), therefore, has a dimension of molarity.
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The chromatogram, £, for a component p’ occurring when s is given
(i.e., when both the slope g of the gradient and the length L of the column
are given) can be represented as a function of m by using a solution, x,),
of Eq. (39) as

Foram) = —[a—;‘ﬂ (42)

fulfilling a conservation condition:

[ Forsomy dm = (43)
where m;, represents the molarity of competing ions at the beginning of
the molarity gradient introduced at the inlet of the column; x%,, represents
the total amount of component p' that has initially been loaded on the
column, expressed as the proportion of the adsorption surfaces in the
total column that are initially occupied by the molecules of component
p'. (For details, see Refs. 3 and 6.)

With ideal molecules fulfilling Eqgs. (5)-(7), however, x,, is uniquely
determined by y,(m) (Sections C and D), and x(,,(m) is independent of s.
This means that x,,(m) or x, does not directly depend upon g’ or g (Eq.
41), and that the chromatographic behavior of the molecules can be
represented by using simultaneous ordinary differential equations that
can be derived as an extreme form of Eq. (39) occurring when g’ or g tends
to infinitesimal:

_ ey _ Bymx) '
d(m/&s) 1 - B(p')(m9x) X(p)

(p'=1,2,...,p) (44)

where

8s = lim (g’ -L') = lim (g- L) (45)
g'—++0 g—++0

3 (Eq. 45) has a physical meaning of the molarity difference of
competing ions between the inlet and the outlet of the total column, being
constant (with respect to time) with linear gradient chromatography. d(m/
&) (Eq. 44) therefore represents the increase in ion molarity measured in
unit of 8. B(m,x) in Eq. (44) now represents the partition of p’ molecules
in the mobile phase in the total column.
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Proof of Eq. (44). The proof is involved in the derivation process of Eq.
(11) in Ref. 6. Thus, at the inlet (L = 0) of the column where the
relationship s = 0 is fulfilled (See Eq. 41), the inflow of molecules does
not occur when once the sample load is finished and a condition is
fulfilled that when s = 0, then x,, = 0 (where p’ = 1,2,. .., p). This means
that when g’ or g tends to infinitesimal, the first term on the left-hand side
of Eq. (39) becomes

a[ B(P') . x , :I
=By P01 {2 )
ds 8s 1-B,, "l

By ] } 1 [ By, ]
—__ 7 . X , = — | — X ’ (46)
[ 1= B(P') ® ms=0 8S 1 - B(D') * m.s=08s

By substituting Eq. (46) into Eq. (39), Eq. (44) can be derived. Q.E.D.
Equation (44) can be solved under the initial condition that, when
m = m;,, then

Xen =X (P'=1,2,...,p) (47)

where it is assumed that the initial molecular density on the adsorbent
surfaces in the column is homogeneous or that it decreases mono-
tonically from the inlet to the outlet of the column (for the exceptional
case of attractive molecular interactions, see Section H). It is also
assumed that the relationship

e~ SERr = ixprlAT _

m, < . (' =1,2,...,p) (48)

is fulfilled; Eq. (48) gives a necessary condition for Eq. (47) to be actually
realized (cf. Eq. 20). The chromatogram f, which is independent of s
(i.e., of both g and L), can be represented as a function of m by using a
solution, ¥y, of Eq. (44) as

futomy = — Lt (49)
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fulfilling a conservation condition:

[ fisomy dm = x4 (0)

Min

(H) Theoretical Chromatograms in the Case of a Single
Component System

We write below the mathematical expressions of the theoretical
chromatograms with a single component system obtained on the basis of
Egs. (44), (47), and (49) for the cases of repulsive, no, and attractive
molecular interactions, where the proofs of the expressions are added.
With a single component system, Eq. (44) represents a single equation,
and the subscript (p') is deleted from all the mathematical formulas.

[I] The case of repulsive (f| > 0) interactions:

eln-ﬂ-C(x‘)]/kT _ 1)

=0 (mi,,<m<
f Y

f=- d c_,[1]-kT1n(q)m+ l)]

dm
1 (51)
0 0 [n=f-SONAT _
=_L_,[lnq)m t 1, om +l] (e 1
dm om + 1 om + 1 Q
<m <m°)

f=0  (m>m

Proof. When m < (el"™" T — 1)/, then x* < x'. This is because
(e IAT — 1)/@ represents the m value occurring when ¥’ = ¥*, and, if
m decreases from this value, ' increases (the case when ¥* < 1) or %’
continues to take a constant value of unity (the case when x* = 1 — 0).
This means that B’ = 0 (Eq. 35). It follows from this that B = 0 (Eq. 40),
that dy = 0 (Eq. 44), that x = x* (Eq. 47), and that f = 0 (Eq. 49), thus
demonstrating the first equation in Eq. (51). When (e €T — 1) /o <m
< m®, then x* > x'. Therefore, from the physical meaning of x', x = x'(m)
= {Y{[n — kT In (pm + 1))/} (see the second equation in Eq. 21). This, in
fact, is the solution to Eq. (44) fulfilling the initial condition given by Eq.
(47) since, when m — (el"™V AT — 1)/p then x — x*. [It should be
recalled that when m,, < m < (e AT — 1)/0, then y = x*; see above.
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Here, it should be noted that the parameter B, or B fulfilling Eq. (44) is
spontaneously determined if the function x,(m) or x(m) fulfilling the
initial condition given by Eq. (47) is determined by means of any
consideration. In fact, B, or B is a function of x,, or x, and the decrease
of ¥, occurring with an increase of m or m/3s (left-hand side of Eq. 44)
should represent the amount of p’ molecules existing in solution in the
total column (right-hand side of Eq. 44). This means that the function
Xey(m) or x(m) as such is the solution to Eq. 44.] By substituting the
expression of y obtained above into Eq. (49), the second equation in Eq.
(51) can be derived. Further, as far as y that has just been obtained is
concerned, when m — m° then y — 0. This means that, when m > m°,
then the relationship 3 = 0 holds in general, and that f = 0 (Eq. 49), thus
demonstrating the third equation in Eq. (51). Q.E.D.
[I1] The case of no (f = 0) interactions:

f=x*-8(m —m°) (52)

in which & represents the delta function.

Proof. Using the argument similar to that used in the proof of Eq. (51), it
can be concluded that when m < m® then x* < ', and that x = x*. When
m > m’, it is evident from the physical meaning of ¥’ thaty = x’ = 0 (see
the second equation in Eq. 23). Therefore, by using the Heaviside
function H(x) [defined as H(x) = 0 whenx < 0 and as H(x) = 1 whenx >
0; H(x) has a property that dH(x)/dx = 8(x)], x can be represented as =
x* - [1 — H(m — m"), and we have —dy/dm = x* - 8(m — m"). Therefore, by
substituting this expression of —dy/dm into Eq. (49), Eq. (52) can be
derived. [For the fact that the function x(m) as such can be considered to
be a solution to Eq. 44, cf. the proof of Eq. 51.] Q.E.D.

[III] The case of attractive (§ < 0) interactions:

f=x*8m — m) (53)

Proof. The case of attractive interactions is different from both cases of
repulsive and no interactions in that x' depends upon Q, ie., ¥/, in
general, increases with an increase of 2 (Eq. 24). As a result, the initial
condition given by Eq. (47) cannot be applied directly, and the
chromatographic behavior of the molecules is determined by the
maximal value of x’' or x that is locally realized in the vicinity of the
column inlet at the initial stage of chromatography. The situation can be
compared with the cases of repulsive and no interactions where the
chromatographic behavior of the molecules is determined by the mean ¥’
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value occurring in the interior of the total column. Thus, usually, the
sample molecules dissolved in the initial buffer with molarity m;, are
loaded on the column, and the vicinity of the column inlet is saturated
with molecules forming the initial band in which the state of & = x = 1 is
realized. When m;, < m < i, the adsorption capacity %’ in the interior of
the initial band conserves the maximal value of unity since Q = 1 > ¢!
(see the first equation in Eq. 24; it should be noted that the maximum
possible value of {™! is unity), and the state of y = x’ = 1 continues to be
realized. When m > m, then ¥’ = 0 (see the second equation in Eq. 24),
and it can be concluded from the physical meaning of ¥’ thaty = ' = 0.
Now, following the argument similar to that used in the proof of Eq. (52),
Eq. (53) can be proved; in Eq. (53), x*, of course, represents the initial
mean value of y occurring in the interior of the total column. Q.E.D.

Conclusion. In the absence of the energetical molecular interactions ()
= 0), a chromatographic peak with an infinitesimal width occurs at
molarity m° of the gradient; both the position and the shape of the peak
are independent of the sample load (see Eq. 52). In the case of attractive
interactions (fj < 0) also, a chromatographic peak with an infinitesimal
width occurs, both the position and the shape of which are independent
of the sample load (see Eq. 53). The elution molarity, 1, of the peak is
higher than the molarity, m°, occurring in the absence of the energetical
interactions, however. In the case of repulsive interactions (7 > 0), the
elution profile is fundamentally different. Thus, a chromatographic peak
has a finite width comprized in the molarity range between (el"™ & IAT —
1)/ and m® [= (e"* — 1)/g; see Eq. 19]. § tends to zero when x* tends to
zero (Eq. 15); this means that the molarity at which the chromatographic
peak begins approaches the molarity at which the peak finishes with a
decrease of ¥, i.e., with either the increase in the column length or the
decrease in the amount of the molecules loaded (cf. Figs. A10 and All in
Appendix III). It can be concluded that actual chromatographic features
that are experienced in many instances resemble the theoretical pre-
diction obtained in the case of repulsive interactions; a similar con-
clusion can be attained even taking into account the longitudinal
diffusion effect in the column. Hence, only the case of repulsive
interactions will hereafter be treated for the multicomponent system
(Sections I-K).

(1) Theoretical Chromatogram in the Case of a Multicomponent
System with Repulsive Molecular Interactions

For each component p’ (p’ = 1, 2,..., p) of the sample mixture, the
theoretical chromatogram can be represented as
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e~ SERr = 1fprplAT _ | )

f.(p') =0 (mi,,<m < P

d | Mey—kTIn(om + 1)
f(p')=_dm c I[ = ﬁ ]

0, + 1 md., + 1
—_ d C‘l[ln (pm(P) /ln (p A(F‘) ] (54)
dm om + 1 ori gy, + 1

el =1 SEr = ixtpepIAT _ | elne) SR T _
<m<
¢ @

o'y~ S(ZB+= bagpr/kT _

iy =0 (m)e () Br=1txpm 1)
o
where the sum Z0._x*. is defined to be zero.

Proof. When m < ()15~ AT — 1)/op then T X8 < X This is
because (e"‘(v) AL = i YIAT — 1)/ represents the m value occurring when
Xy = Zb ,xm, and, if m decreases from this value, x/,, increases (the case
when Z" -1X{, < 1) or X{y) continues to take a constant value of unity (the
case when %Xk = 1 — 0). This means that B(,,, 0 (Eq. 35), from
which it can be derived that dy,y, = 0, that x;,, = x&, and that £, = 0, thus
demonstrating the first equation in Eq. (54) (cf. the proof of the first
equation in Eq. 51). When (o)™ VS®-me)dT _ [yo < m <
(e SERZhe VAT — 1)/ then

p'—1 p’
A X <y < X Xl (55)

where the first inequality has been derived from the consideration similar
to that used in the proof of the first equation in Eq. (54). Therefore, from
the physical meaning of x;,,, we have

Z X = X,(p)(m) = c—l[n(p') - le];l((pm + 1)] (56)

since My < ()™ SE =T — 1)/0 < (el N SEEHEIAT — 1)/p <
m(y, (see the second equation in Eq. 21). Equation (56) can be rewritten
as

-1
o = ¢ [Lam kIRl £ D] S s
p*=
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where the sum X5 % is defined to be zero. On the other hand, the
relationship

p'~1 p—1
2 Xen = 2 X (57)
p"=1 p"=1

is fulfilled. In fact, writingone of 1,2,...,p’ — 1 as p”"’ and by using both
the left-hand side inequality in Eq. (55) and the general inequalities

A2 X2 0 2 A (58)
(see Section C), then
o p'—1
le X8 < pzl X6 < Xy < Xipy (59)

can be derived. The relationship between the extreme left-hand side and
the extreme right-hand side of Eq. (59) is similar to the relationship
o X < X Which has been used to derive the relationship of x,, = x&,
in the process of the proof of the first equation in Eq. (54). This means
that x,~ = x&~ and that Eq. (57) is fulfilled. Therefore, by substituting
Eq. (57) into Eq. (56),

[Ny — kT In(pm + 1) ol
Xon = § II: = 3 ] - Zl X (60)
o

is obtained. Equation (60) is a solution to Eq. (44) fulfilling the initial
condition given by Eq. (47) since, when m — (el"e)™" & =dpDAT — 1)/,
then x,, — X&) [It should be recalled that when m;, < m <
(el"(p')—ﬂ'&%ﬂ'-lltp'vl/" — 1)/, then y,, = x&, For the fact that Eq. 60
represents the solution to Eq. 44, cf. the proof of Eq. 51.] By substituting
Eq. (60) into Eq. (49), the second equation in Eq. (54) can be derived.
Further, as far as yx,, given by Eq. (60) is concerned, when m —
(e"‘(ﬂ""“‘ﬁ':l’fo'?""r — 1)/g, then X, — 0. This means that, when m >
(Mo SEFEIIAT — 1)/, then the relationship ¥, = 0 holds in general,
and that £, = 0 (Eq. 49), thus demonstrating the third equation in Eq.
(54). QED.

Remark. The total chromatogram for a given mixture can be repre-
sented as a sum of the chromatograms for the respective components 1,
2,..., p (Eq. 54) fulfilling the relationship
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My 2Ne 2 " 2Ny (61)

Equation (61) can be derived in connection with the relationship given by
Eq. (58). On the basis of both Egs. (54) and (61), it can be understood that
the total chromatogram is composed of two types of interval: (a)

[(el"(p')‘“'§‘28‘=IX<‘D"))V"T - 1)/o,
(e SERTIde AT _ 1)/0]
and (b)
[(e['](p'+l)—ﬂ'C(EB:’=llrp”))]/kT - /o,
(el ™V SEF =y AT — 1) /)
where p’' = 1, 2,..., p, and the sum Z‘;~=,x(",‘,~) is defined to be zero;
(eMe+ 11 SER = 1DV _ 1)/
and
(e SEYr = ixfpIAT _ )0

are defined to be — and , respectively. In interval (a), f), in general,
takes positive values whereas, in interval (b), f, is always equal to 0.
Further, since x§,, x&, - - - » X actually have finite values, interval (a), in
general, has a finite width. As far as interval (b) (except those formed
outside the total chromatogram) is concerned, however, it has a finite
width only when 1, > 141, When ) = 141y, the width of interval (b) is
infinitesimal. In this instance the chromatogram formed by component
p' is identical with that formed by both component p’ and p’ + 1 provided
that the x{, value with the former chromatogram is equal to the xJ, +
X&:+1) value with the latter one. This situation is diagrammatically shown
in Figs. A10 and A12 or Figs. All and A13 in Appendix IIL

(J) The Case When the Distribution of the Molecular Components
Is Continuous

When the distribution of the molecular components is continuous, let
us currently represent Ny, Ny, - - - , Ny DY using a variable n. We call F(n)
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the normalized distribution function of n fulfilling the relationship

[ Foyan =1 (62)

and x* the total molecular density, Zf._x$-, on the adsorbent. By using
these symbols, the total chromatogram f(m) [= Zf.. f,(m)] can be
represented as

d
Sim)=x*-Fn)- 5L (63)
in which
=1 -lx* - [RFan/kT _
m = e '\(p 1 (64)

Proof. On the basis of the argument made in Section I, it can be
understood that the one-to-one correspondence holds between the two
distributions of f(m) and F(n). Therefore, taking into account both Egs.
(50) and (62), Eq. (63) can be derived. It is now sufficient to give a proof of
Eq. (64). Thus, when the distribution of the molecular component is
continuous with a finite x* value, the widths of both intervals (a) and (b)
(see Remark in Section I) are infinitesimal, and we have relationships

p’ p'—1 ®©
2 AR D A= x‘“f F(n)dn (65)
o=l o= n
from which Eq. (64) can be derived. Q.E.D.
Provided
I S R
F() =% - 2 [y 80 = no)] (66)
o

both Egs. (63) and (64) lead to Eq. (54).
Proof. By using an infinitesimal positive constant €, Eq. (66) can be
represented as

* 1 ,
F(n)':in%)_.g (n(p')—8<n<n(p');p =1329---9p) (67)
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F(n)=0 (in the other range of n) (67)

Therefore, when
Ny — €SN < Ny (68)

Eq. (64) can be rewritten as

B oM SIER S Ixtpr)+ (o=  Xfpryel VAT _ g

Y

(69)

from which

dn _ £ d _,[n — kT In(om + 1)] (70)

B A

dm  x&, dm

can be derived. By substituting both the first equation in Eq. (67) and Eq.
(70) into Eq. (63),

__d ,n—kTln(em+ 1)
S(m) dmC [ 3 ] (71)

is obtained. On the other hand, the molarity range fulfilling Eq. (68) can
be estimated by using Eq. (69):

ey =N B = ixfpr)IAT — | <m< el SER = gyl AT

] 9 (72)
At the limit of ¢ = 0, Eq. (72) reduces to
(o)~ SERr = 1XPpr)I/AT _ Ingpy =1 - SER-= {agprI/AT _
e Bmltp) 1<m<e(p> B(p(p) 1 (73)

and n in Eq. (71) can be rewritten as n,, (cf. Eq. 68). It is also possible to
write f(m) in Eq. (71) as f), and Eq. (71) and the molarity range given by
Eq. (73) coincide with the second equation in Eq. (54) and the molarity
range in which this equation holds, respectively. [In the right-hand side
inequality limiting the molarity range in which the second equation in
Eq. 54 holds, the equality is not involved in contrast to the right-hand side
inequality in Eq. 73 to which an equality is added. It is possible, however,
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to add an equality to the former inequality since f,, in Eq. 54 (as a
function of m) is continuous at m = (e"‘(v’r“'“zg";h‘(v’)ﬁ"r — 1)/¢.] Unless

Eq. (73) or (68) is fulfilled, then F(n) = O (the second equation in Eq. 67),
and, from Eq. (63),

f(m)=0 (74)

is derived. Therefore, writing f;, instead of f(m) in Eq. (74), the first and
the third equations in Eq. (54) are obtained. Q.E.D.

(K) Relative and Approximate Expressions of £, and f(m)

By using relative parameters introduced in Section E, Eq. (54) can be
rewritten as

(om?, + 1)"6)™E SEh =1ty — 1)

f' =0 (yin< <
»") y (pm?”

foy = — ic-l[w(p') — In(em{y + 1)/In (em{,, + 1)]
(»") dy p—

=

2 Wi~ B C(ER = 1xFom)
ompy, + 1)¥e) br=1xtmy — 1
(( mt1) om, (75)
<y< (CPM?” + l)w(p')’E‘C(EB:';}x(p.)) _ ])
om{,
- q)mol + 1)W(p')‘5~€(28;;lx(p~)) -1
for=10 ( > (omy,)
) y (pm?l)
where
m;
yin = —& 76
my, (76)

Equation (75) can approximately be represented as

,
Joy=0 [J’in Sy <we - E- C( ,Zl Xﬁ»’))] )
o
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Jor=— 5;‘ c_l[lmé__y] [W(n') - & ‘C( i X("B'))

(=] p'=l

= (77)
<y <we —E: C(p; X("é'))]

’ C(:Z: X&’a’))]

Equations (63) and (64) can relatively be written as

(]

Jor =0 [y 2 Wiy —

dw
= y*.F [l 8
fO) =t F)- 5 (78)
and
(omly + 1)~ &0 [PFoaw) _

= 79
y o’ (79)
respectively, where w is the current expression of wgy, Wp),..., W,

Equation (79) can approximately be represented as
y=w—E-C<x*-f F(w)dw) (80)

In Appendix III, approximate f,’s calculated by using Eq. (77) under
two assumptions of {(x) = x and {(x) = \/x are diagrammatically
represented. f(m)’s for several types of continuous distribution, F(w),
calculated by using both Egs. (78) and (80) under assumption of {(y) =
V/x are also depicted in Appendix III. (For details, see the Discussion
Section.)

DISCUSSION
(A) The State of the Molecules on the Adsorbent Surface and
Two Possible Forms of Function {(x)

At least with gradient chromatography of the competitive type it can, in
general, be assumed that the mutually superimposed state of molecules is
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hardly realizable on the adsorbent surfaces in the column when they are
adsorbed. With this chromatography the adsorption energy per molecule
is generally large enough for the value of the parameter B, or B, to be
virtually equal to zero when the molarity of competing ions is equal to the
initial value m;,. As a result, the molecule is almost completely retained
on the column before the gradient begins. Under this situation, provided
the molecule under consideration is partially superimposed on another
molecule on the adsorbent surface, the loss of the interaction energy of
the former molecule with the adsorbent surface occurring due to the
steric hindrance provoked by the latter molecule should also be large. It
can, in general, be concluded (see below) that, provided the total
adsorption energy per molecule is large enough for it to be retained on
the column before the gradient is applied, the loss of the adsorption
energy per molecule occurring due to the superposition on another
molecule is much more important than the gain of entropy occurring due
to the increase in the number of the adsorption configuration; this
increase occurs by allowing the superimposed state. As a result, the
mutually superimposed state of molecules is hardly realizable. Thus, in
Appendix I of Ref. 7, the above was quantitatively examined on the basis
of a simple statistical mechanical consideration by using elongated
model molecules that are much longer than the interdistances among the
neighboring adsorbing sites on the adsorbent surface; the molecules are
more or less rigid but sufficiently flexible to attach themselves on the
adsorbent surface when they have to pass over other molecules that have
already been adsorbed. It was concluded (Ref. 7, Appendix I) that the
superposition state can almost never be realized with these molecules.
Since these molecules would represent the type that can most easily be
superimposed on one another, it can, in general, be assumed that the
mutually superimposed state of molecules is hardly realizable on the
adsorbent surfaces in the column.

As far as molecules with an asymmetrical shape (such as those
represented by a rod) are concerned, it can, in general, be assumed that
the molecules are arranged in parallel with one another on the adsorbent
surface avoiding the mutually superimposed state, provided that the
molecular density on the adsorbent surface is high enough.* With this
adsorption manner, the energetic interaction among molecules on the

*It is tacitly assumed that a molecule is adsorbed on the adsorbent surface by using a side
of the rod; the probability that the rod is adsorbed in such a way that the main axis of the
rod is perpendicular to the adsorbent surface is negligibly small.
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adsorbent surface would occur mainly through the side of the rod (which
occupies the major part of the total surfaces of the rod), and two models
can be proposed for the adsorbed phase of the molecules which is
realized on the adsorbent surface. In the first model (called the
amorphous phase model), the molecules are situated at random on the
adsorbent surface and maintain parallel orientation with one another. In
the second model (called the quasi-crystalline phase model), the
positions of the molecules (arranged parallel with one another) are
restricted to one another due to the energetic interaction among them
through the side of the rod. [In the argument in Ref. 7, Appendix I, for the
possibility of the occurrence of the mutually superimposed state of the
molecules on the adsorbent surface (see above), account is not taken of
the quasi-crystalline phase model, and only the amorphous phase model
is considered; this is because, in this argument, the effect of the energetic
molecular interaction is neglected in both the superposition and
nonsuperposition states of the molecules. It can be assumed, however,
that the superposition state is unrealizable from a practical point of view
even in the presence of energetic molecular interactions since the
possibility of the occurrence of the superposition state is extremely small
in the absence of the energetic molecular interaction; see Ref. 7,
Appendix L]

In general, the mutual interaction energy Eg, or { (see Eq. 12) would be
approximately proportional to the molecular density occurring in the
direction perpendicular to the main axis of a given molecule. With the
amorphous phase model, this density can be estimated to be x on the
basis of a Bragg-Williams approximation for the distribution of the
molecules on the adsorbent surface, or we have

S0 = x (81)

With the quasi-crystalline phase model, the molecular density in the
perpendicular direction of a rod can be estimated to be of the order of \/i
since the axial positions of the molecules are not determined at random;
the rearrangement of the random positions of the molecules occurs on
the adsorbent surface due to the energetic molecular interaction (see
above). Hence, we have

S0~ vV (82)*

*In Refs 7-10, Eq. (82) is simply assumed without justification. Detailed arguments on
Eq. (82) will be made in a subsequent publication (T. Kawasaki and M. Niikura, “Overload
Quasi-Static Linear Gradient Chromatography: Theory versus Hydoxyapatite High-
Performance Liquid Chromatography,” Sep. Sci. Technol., In Press).
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Both amorphous and quasi-crystalline phases can be considered even
in the case of molecules with a symmetrical shape (such as those
represented by a sphere). For these molecules, Eq. (81) seems to be
realizable independent of the type of the adsorbed phase of the molecules
since the energetic interaction can be assumed to occur in any direction
around a given molecule. In the special case when the arrangement of the
adsorption sites on the adsorbent surface is highly asymmetric (with a
coordination number, z, equal to 1 or 2; cf. Assumption 1 in Ref. 71,
Theoretical Section A), Eq. (82) might be realizable with the quasi-
crystalline phase, however.

(B) The Shape of the Theoretical Chromatogram and the
Relationship with the Experiment

Typical chromatograms calculated by using Eq. (77) or both Eqgs. (78)
and (80) on the basis of both the amorphous (Eq. 81) and the quasi-
crystalline phase (Eq. 82) model are illustrated in Appendix IIl. Thus,
Figs. A10 and A1l depict chromatograms for single component systems
obtained by using Eqgs. (81) and (82), giving a rectangle and a right-angled
triangle diagram, respectively.

Figures A12 and Al3 are chromatograms for two component systems
with the identical 0, or w,, value obtained by using Egs. (81) and (82),
respectively. It can be seen that the total shapes of the two component
chromatograms (Figs. A12 and A13) are identical with those of the single
component systmes (Figs. A10 and All); the x* value with the single
component chromatograms is equal to the x}, + %, value with the two
component chromatograms, provided E is constant (for details, see the
explanation of the figures in Appendix III). In the case of a more than
two component system with w, = wy = - - - = w, in which Eq. (81) is
fulfilled, rectangles that keep in contact with one another continue on the
left-hand side of the two component chromatogram (Fig. A12), com-
pleting as a whole a rectangular chromatogram. In the case of the
corresponding more than two component system in which Eq. (82) is
fulfilled instead of Eq. (81), rectangles are replaced by trapezoids (cf. Fig.
Al3), completing as a whole a total chromatogram of right-angled
triangle.

Figures Al4 and AlS illustrate chromatograms for two component
systems with different 1, or w,, values obtained by using Egs. (81) and
(82), respectively. It can be seen that, provided the chromatograms
concerning the respective components of the mixtures approach one
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another to keep in contact, the total shapes of the two component
chromatograms (Figs. A14 and AlS5) will be identical with those of the
single component systems (Figs. A10 and All); the x* value with the
single component chromatograms is equal to the x§, + x5, value with the
two component chromatograms, provided E is constant (for details, see
the explanation of the figures in Appendix III). In the case of a more than
two component system with wgy > wg > - -+ > w, in which Eq. (81) is
fulfilled, rectangles that are separated from one another are present on
the left-hand side of the two component chromatogram (Fig. Al4),
completing as a whole a rectangular total chromatogram provided the
respective rectangles approach one another to keep in contact. In the case
of the corresponding more than two component system in which Eq. (82)
is fulfilled instead of Eq. (81), rectangles are replaced by trapezoids (cf.
Fig. A15), completing as a whole a total chromatogram of a right-angled
triangle provided the respective trapezoids and a triangle approach one
another to keep in contact.

Figure A16 illustrates several types of continuous distribution, F(w), of
molecular species with different w values. Parts(a)-(e) of Fig. A17 show
the results of the calculation of the chromatograms for the distributions
shown in Parts(a)-(e) of Fig. A16, respectively; the calculation has been
done only for the case when Eq. (82) is fulfilled. When x*—0 or under
condition of infinitesimal sample load, all the chromatograms in Fig.
Al7 tend toward the patterns shown in Fig. A16.

It can now be understood that when Eq. (81) holds, a rectangular
chromatogram is obtained in the case of a signle component system (Fig.
A10), and, with multicomponent systems, the shape of the total chroma-
togram tends to become a rectangle as a whole due to repulsive
interactions among molecules (Figs. A12 and A14). When Eq. (82) holds,
a chromatogram of a right-angled triangle is obtained in the case of a
signle component system (Fig. All), and, with multicomponent systems,
the shape of the total chromatogram tends to become a right-angled
triangle as a whole (Figs. Al13, Al5, and Al7). Chromatograms with a
shape close to a right-angled triangle are often experienced under
overload condition with gradient chromatography; this implies that it is
Eq. (82) rather than Eq. (81) that is realized in many actual instances. Of
course, this is a deduction based upon the ideal molecular model of
infinite dimensions (with properties given by Egs. 5-7); it is necessary to
reexamine both Eqgs. (81) and (82) in detail by using molecular models
with finite dimensions.
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F1G. A2. Approximate x(;, and x(y + 1) as functions of y when the energetical interactions are

absent (2 = 0) and when w(y) > w41y These have been drawn on the basis of Eq. (33),

taking into account both Egs. (30) and (31). (Prototypes of this figure can be found in Refs. 7
and 8)
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APPENDIX II: DIAGRAMMATICAL REPRESENTATIONS OF
APPROXIMATE B’ AND B},

1
£>0
B'
Q=2
0.5 l
Q=05
Q=1 cl)'_";' —>
) L !
0 0.5 1
y

FI1G. A4. Approximate B’ as a function of y for several values of 0 when repulsive molecular

interactions are present in a single component system. For the calculation, the approximate

expression of Eq. (32) (cf. Eqs. 30 and 31) and Egs. (37) and (38) have been used, assuming

that {(x) = /%, that w = 1, and that E = 0.5. (For collagen molecules, it can be estimated
that & ~ 0.2; see Ref. /7.) (Reproduced with modifications from Ref. 7.)
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0< Q31—
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FiG. AS. As Fig. A4 when the energetical molecular interactions are absent in a single

component system. This has been calculated by using the approximate expression of Eq.

(33) (cf. Egs. 30 and 31) and Eqs. (37) and (38), assuming that w = 1. (Reproduced with
modifications from Ref. 7.)
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1
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0.5 l
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0 ¥
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FiG. A6. As Fig. A4 when attractive molecular interactions are present in a single

component system. For the calculation, the approximate expression of Eq. (34) (cf. Egs. 30

and 31) and Eqs. (37) and (38) have been used, assuming that {(x) = \/Z thatw = 1, and that
2 = —0.5. (Reproduced with modifications from Ref. 7))
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APPENDIX Ill: DIAGRAMMATICAL REPRESENTATIONS OF
APPROXIMATE CHROMATOGRAM f,(y) or f(y) WHEN REPULSIVE

MOLECULAR INTERACTIONS ARE PRESENT

(cf. Discussion Section)

m|~

0

0 |—Sex*

F1G. A10. Approximate f as a function of y for a single component system when {()) = x.
This has been calculated by using Eq. (77) assuming: E-x* = 0.5and w = 1.

W I (I
F1G. All. As Fig, A10 when {(x) = \/)—(: where it has been assumed: E\/_' =05andw=1.

(Reproduced from Ref. 10.)
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FiG. A12. Approximate f or f as a function of y for a two component system with the
identical n,y) or w(y) value when {(x) = x. This has been calculated by using Eq. (77)
assuming: E - (), + X&) = 0.5, 10y = xfy, and w(y = w(y; = 1. It can be seen that the shape of
the total chromatogram (being a rectangle) is identical with that of the chromatogram for a
single component system [Fig. A10; cf. “Remark” in Theoretical Section (I)]. In the case of a
more than two component system with w(;y = w = - -+ = w(,, rectangles that keep in
contact with one another continue on the left-hand side of the two component chromato-
gram, completing as a whole a rectangular total chromatogram.

f'(2) f(1)

4

—>

o
|
1}]
e
:*)(

FIG. A13. As Fig. A12 when {(x) = v/, where it has been assumed: E/xj, + x%) = 0.5, )_((‘,) =
Xy and wyy = w) = 1. It can be seen that the shape of the total chromatogram (being a

right-angled triangle) is identical with that of the chromatogram for a single component
system [Fig. All; cf. “Remark” in Theoretical Section (I)]. In the case of a more than two
component system with w(y = wy = - - - = w,, trapezoids that keep in contact with one
another continue on the left-hand side of the two component chromatogram, completing
as a whole a total chromatogram of right-angled triangle. (Reproduced from Ref. 10.)
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FIG. A14. Approximate fy, or fas a function of y for a two component system with different
Mgy OF Wy values when {(x) = x. This has been calculated by using Eq. (77) assuming:
E-(fy + xby) = 0.5, xfi) = 18y way = 1, and wp) = 09. It can be seen that, provided the
chromatograms concerning the respective components of the mixture approach one
another to keep in contact, the shaep of the total chromatogram (being a rectangle) will be
identical with that of the chromatogram for a single component system (Fig. A10). In the
case of a more than two component system with w(;y > wy > - - - > w(,, rectangles that are
separated from one another are present on the left-hand side of the two component
chromatogram, completing as a whole a rectangular total chromatogram provided the
respective rectangles approach one another to keep in contact.
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|
T

F1G. AlS. As Fig. Al4 when {(x) = /%, where it has been assumed: Ev/xf) + x&) = 0.5, x}i) =
&) Wity = 1, and iy = 0.9. It can be seen that, provided the chromatograms concerning the
respective components of the mixture approach one another to keep in contact, the shape of
the total chromatogram (being a right-angled triangle) will be identical with that of the
chromatogram for a single component system (Fig. Al1). In the case of a more than two
component system with w(y > wg) > - - - > w,, trapezoids that are separated from one
another are present on the left-hand side of the two component chromatogram, completing
as a whole a total chromatogram of right-angled triangle provided the respective trapezoids
and a triangle approach one another to keep in contact. (Reproduced from Ref. 10.)
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FI1G. A16. Several types of continuous distributions, F(w), of molecular species with different
w values. (Reproduced from Ref. 10.)
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FIG. Al7. Parts (a)-(e) represent chromatograms with & = 0.5 and different x* values for the
mixtures as shown in Fig. A16 (a)-(e), respectively. These have been calculated by using
both Egs. (78) and (80) for the case when {(x) = \/Z it is assumed that y;, = 0. When x*—0
or under condition of infinitesimal sample load, all the chromatograms tend toward the
patterns shown in Fig. A16. (Reproduced with modifications from Ref. 10.)
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