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A Fundamental Structure of the General Theory of 
Overload Quasi-Static Linear Gradient Chromatography 

TSUTOMU KAWASAKI 
CHROMATOGRAPHIC RESEARCH LABORATORY 
KOKEN BIOSCIENCE INSTITUTE 
3-5-18 SHIMO-OCHW, SHINJUKU-KU, TOKYO 161, JAPAN 

A W d  

The earlier theory of overload linear gradient chromatography developed over 
15 years ago by using an  ideal molecular model with infinite dimensions is 
rearranged and improved in order for it to be compatible with the new concepts 
that are involved in the general theory of gradient chromatography developed 
recently. By applying the ideal molecular model, the structure of the overload 
chromatographic theory is considerably reduced, emphasizing the fundamental 
structure. Chromatograms with a shape close to a right-angled triangle with 
tailing are often experienced under overload condition. On the basis of the 
present theory, this type of chromatogram can be explained in terms of the 
Occurrence of a quasi-crystalline phase of the adsorbed molecules that are 
repulsively interacting with one another on the adsorbent surfaces in the 
column. 

INTRODUCTION 

Earlier (1-3), a general theory of quasi-static linear gradient chro- 
matography was developed; this is schematically outlined in the Ref. 3 
Appendix. The theory is unique in that it involves several novel concepts: 
“two points of view on gradient chromatography,” “abstract flux,” 
“universal differential equation for any chromatography,” etc. The scope 
of this theory is limited, however, to the simplest case when the mutual 

1109 

Copyright 0 1989 by Marcel Dekker, Inc. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
5
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1110 KAWASAKI 

interaction among sample molecules is negligible. Therefore, the theory 
is valid under small sample load conditions only. 

With preparative chromatography, large amounts of sample molecules 
are often loaded per unit cross-sectional area of the column, realizing a 
so-called overload chromatographic condition. Under this condition, 
mutual molecular interactions occurring in the stationary phase can be 
assumed to play an important role; the mutual interaction occurring in 
the mobile phase is negligible since the molecular concentration in 
solution is usually low. The approximate theory of quasi-static linear 
gradient chromatography in which account is taken of the mutual 
molecular interaction occurring in the stationary phase was developed in 
Refs. 4-6. The main part (4,6) of this theory is limited to the case when all 
the molecules have the same dimensions and the same shape, however. 
The relationship between the small load theory (1-3) and the overload 
theory (4-6) is argued in detail in Ref. 3. 

The study of overload gradient chromatography goes back to 15 years 
ago when a theory began by applying an ideal molecular model with 
infinite dimensions (7-10); the effect of longitudinal diffusion in the 
column is neglected in this theory. The purpose of the present work is to 
rearrange and improve the initial overload theory (7-10) in order for it to 
be compatible with the new concepts that are involved in both the recent 
theory of gradient chromatography (1-6) and the recently specified 
adsorption and desorption model (11-13). By applying the ideal mole- 
cular model with infinite dimensions, the structure of the overload 
chromatographic theory is considerably reduced, emphasizing the 
fundamental structure. The present work will therefore promote a better 
understanding of the overload theory developed in Refs. 4-6. 

In the chromatographic theory (I-ZO), a parameter Bip,) plays a 
fundamental role; this represents the partition of molecules (of the 
chromatographic component p' under consideration) in the mobile 
phase in an elementary volume in the column, or the ratio of the amount 
of molecules in the mobile phase to the total amount in that elementary 
volume. It can be considered (11-13) that Z3[p,) is a function of (a) molarity, 
m, of the gradient element in the interstice in the elementary volume 
under consideration, and (b) molecular densities €I(,), e,,,, . . . , e,,, on the 
adsorbent surface for all the components 1, 2,. . . , p of the sample 
mixture, including the component p' under consideration; with small 
sample loads, B;,., is a function of only (a). 

upon rn 
with hydroxyapatite (HA) chromatography carried out in an aqueous 
system, a competition model was introduced (14), and this model was 
applied in studies in Refs. 1-10. The model states that adsorbing sites are 

Over 18 years ago, in order to explain the dependence of 
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THEORY OF OVERLOAD GRADIENT CHROMATOGRAPHY 1111 

arranged in some manner on the surfaces of the packed particles (HA 
crystals) in the column; sample molecules (with adsorption groups) and 
the gradient element (i.e., particular ions from the buffer constituting the 
molarity gradient) compete for adsorption onto the sites. A competing ion 
covers a single site when it is adsorbed whereas a sample molecule, in 
general, covers plural sites (11-14). The competition model will be 
applicable to not only HA chromatography but also ion-exchange 
chromatography. In Ref. 13 another qualitative model was proposed to 
explain the dependence of B&) upon m with both reversed-phase 
chromatography and HA chromatography carried out in an organic 
solvent system. In the present work, the competition model is applied. 
The conclusion attained in the present work will be valid, at least 
partially, if the competition model is replaced by another, however. 

Experimental verifications of the theory under small load (1-3) and 
overload (4-6) conditions are given for HA chromatography in Refs. 25 
and 16 and in Ref. 17, respectively. 

THEORETICAL 

(A) Static Part: Partition /3[prl for Ideal Molecules with 
Infinite Dimensions 

On the basis of the competition model (Introduction Section), partition 
B:,,,) can be represented by Eq. (26) in Ref. 13, which can be rewritten 
as 

and 
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1112 KAWASAKI 

The physical meanings of the symbols involved in Eqs. (1)-(4) are: 

p' = a molecular component of the sample mixture, representing one 
of the components 1,2,. . . , p. 

x;,.) = number of adsorbing sites on the adsorbent surface on which 
the adsorption of competing ions is impossible due to the 
presence of an adsorbed pf molecule. Therefore, xi,,? is the 
parameter measuring dimensions of a p' molecule. 

E(pr) = absolute value of the interaction energy with adsorbing site(s) 
per molecule of component p' occurring provided the molecule 
is isolated on the adsorbent surface. 

qP,, = configurational entropy factor per molecule of component p' 
occurring provided the molecule is isolated on the adsorbent 
surface. (For details, see Refs. 11 and 12.) 

no = total number of adsorbing sites on the adsorbent surface in the 
elementary volume of the column. 

yP,) = total number of the molecules of component pf that are 
adsorbed on the adsorbent surface in the elementary volume of 
the column. 

= molecular density for component p' on the adsorbent surface. 
E&(f3) = mutual interaction energy per molecule of component p' on the 

adsorbent surface; E& > 0, E& = 0, and E& < 0 represent the 
cases with repulsive, no, and attractive interactions, respectively. 
(For details, see Refs. 11 and 12.) 

p$@) = geometrical interaction factor for a molecule of component pf 
on the adsorbent surface. p$@) takes finite positive values, 
tending to 1 and 0 when C$=,O(, tends to 0 and the maximum 
value, respectively. (For details, see Refs. 11 and 12.) 

fi = positive constant that is proportional to the ratio of no to the 
interstitial volume of the column element. (For details, see Ref. 
13.) 

cp = positive constant representing the property of competing ions. 
(For details, see Ref. 13.) 

rn = molarity of competing ions, constituting a linear gradient in the 
total column. 
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THEORY OF OVERLOAD GRADIENT CHROMATOGRAPHY 1113 

In the case of ideal molecules of infinite dimensions with properties: 

xip-) 03 ( 5 )  

(6) E(,') + kT In q,.) = O(x;,.,) 

and 

q ) ( e )  = o(x;,*)) (7) 

Equation (2) reduces to 

(6) Some Approximations and Preliminary Considerations 

In order to simplifj. the argument, we introduce the following 
approximations: 

(a) Both E,*,, and p,*,,, are functions of Z:M=lO(pT 
(b) The maximum possible value, [Z:.=,O(p&,ax, of Z$=18(p7 is inde- 

pendent of the ratio among 0(1), O,,, . . . , O(p). 
(c) The ratio between E&) and x;,,) (i.e., E,*,,jx[,.,) is independent of the 

p' value. 
(d) x;,,) is equal to the number of adsorbing sites on the adsorbent 

surface on which the adsorption of any type of sample molecule is 
impossible due to the presence of an adsorbed p' molecule. 

Under these approximations, writing 
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and 

KAWASAKI 

we have 

Further, writing 

and 

P 

x = c X(P7 
p" 1 

o < x < 1  

E(p,, + kT In ttp.) 
T P , ,  = 

Eq. (8) can be represented as 

4 7  

.In the above, the function <(x) is characterized by the relationships 

lim <(x) = 0 (15) x++o 

and 

lim <(x) = 1 
x+I -0 

and, in many instances, it can be assumed that < increases monotonically 
with an increase of x; this assumption will be used in all the arguments 
below. 

fl is a constant, and, if repulsive (attractive) interactions occur among 
sample molecules on the adsorbent surface, 9 > 0 (fl < 0); in the absence 
of the energetical interactions, fi = 0. 
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THEORY OF OVERLOAD GRADIENT CHROMATOGRAPHY 1115 

The function p$.,(x), which takes only positive values, is characterized 
by the relationships 

lim p&,(x)  = 1 
x++O 

and 

[cf. the explanation of p$@) in Section A]. 

(14). By using both Eqs. (15) and (17), rn:,,,, can be represented as 
Let m$, be the m value occurring when both Y(p,, = 1 and x + + O  in Eq. 

Finally, let tfqP,) be the m value occurring when both Tp,, = 1 and x + 
1 - 0 in Eq. (14). rfqp,, can be represented as 

Equation (20) has been derived by using both Eqs. (16) and (18), taking 
into account the consideration that l iq+l-o lnp$,(X) = --co but that the 
term [In p $ , , ( ~ ) ] / x { ~ . ,  in Eq. (14) continues to take an infinitesimal value 
until x just attains unity since x;p,) = -co (Eq. 5). [It should be noted that, 
due to its physical meaning, r f ~ ( ~ - , > O  whereas, in Eq. 20, tfqP,, < 0 if 
qPl) < 4. This means that, in the case of repulsive interactions when 4 > 0, 
the situation where both relationships Y(p,, = 1 and x + 1 - 0 are fulfilled 
is realized only if q(pr) > 4 (> O).] 

(C) Priority of the Adsorption among Different Molecular Species 

Let X;p.,(m) be the adsorption capacity of the adsorbent realized in the 
presence (on the adsorbent suvace) of molecular species pr when the molarity, 
m, of competing ions is given, i.e., the maximum possible value of x that 
can be realized in the presence (on the adsorbent surface) of species pr 
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1118 KAWASAKI 

when m is given. We also define n(,,,) as the total amount of species p' in 
the elementary volume of the column expressed in such a way that 
a(,,,) = 1 when the amount is equal to that which just saturates the total 
surfaces of the adsorbent in the column element (i.e., the amount that just 
realizes the state of x = 1). We discuss below the priority of the adsorption 
among different molecular species occurring in different cases when rn is 
given. 

[I] The case when d,,(rn) = d2)(m) = - - - = G,,)(rn) and [E(p,) + kT In 
T(,, ,)] /[E(, ,+~) + kTln r(,,+I)] > l(p' = 1,2, . . . , p - 1): If a(,,? < dl)(rn) = 

= X;,,)(rn), then, due to the physical meaning of X;,,.)(m) (p" = 
1,2,. . . , p), all the molecules are adsorbed. If Zc$,, a(,") > dl,(rn) = X;,,(rn) 
= . . .  = &,)(rn), then the adsorption occurs according to priority in the 
order of species 1,2,. . . , p. Thus, due to the assumption, E(pp) + kT In T(,,,) 
- (E(p,+l, + kT In r(,,,+,)) = 03 (cf. Eqs. 5 and 6); this means that, out of the 
total amount Z:%=, a(,? of the molecules, C$it a,,., + K - a(,,) [= &(m) = 
X;z,(rn) = * * = $,&I); 0 < K 6 11 are adsorbed and that the rest of the 
molecules [(I - K) - 51(,,,, + Z$=p,+l is in solution where p' = 1,2,. . . , 
p and the sums X:-=, and Z&,+l a(,-) are both defined to be zero. 
Figure 1 represents schematically the aspect of preferential adsorptions 
among five molecular species occurring when X&=, a(,.) > &(m) = 
d2,(rn) = d3,(m) = &(m) = d5)(rn), p' = 3 and 0 < K < 1. It can be seen in 
Fig. 1 that species 1 and 2 and some part of species 3 are preferentially 
adsorbed; the other part of species 3 and species 4 and 5 are in 
solution. 

> &(rn): If Z$=, a(,.) < 
X;,,,(m), then, due to the physical meaning of X;,,.)(rn) (p" = 1,2,. . . , p), all 
the molecules are adsorbed. If Z;.-, a,,,.) > &)(rn), then the adsorption 
can be considered to occur according to priority in the order of species 1, 
2,. . . , p. Thus, if &,,-,)(rn) > X$-, In,,,? > X;,,,)(rn) [where p' = 1, 2, . . . , p, 
and do@) is defined to be co], then, out of the total amount Xi.=, a(,,.) of 
the molecules, Z$ii a,, + Z$;t SZ,, + K * a(,., [= X;,,)(m); p* = p', p' + 
1,. . . , p and 0 < K < 11 would be adsorbed, and the rest of the molecules 
[(l - K) a(,,.) + Z$++, a(,,.)] would be in solution where the sums Z&, 
a(,,.), Z$;i951,,, and Z$,,+, a,, are defined to be zero. Figure 2 represents 
schematically the aspect of preferential adsorptions among five mole- 
cular species occurring when X;,,(rn) > g2)(m) > Z&I a(,,.) > &)(m) > 
&(m) > $&I) (i.e., when p' = 3) and when several p* and K values are 
given. Figure 2 can be compared with Fig. 1. 

- > X;,)(rn): If X;,,.,(rn) 
= dp8+l)(rn), it is possible to number the molecular species in such a way 
that the relationship [E(,,', + kT In T(~~)]/[E(~~+,) + kT In T(,,,+,,] > 1 is 

= - - 

[II] The case when &)(m) > G2,(rn) > - 

[111] The general case when dl)(rn) > X;z)(rn) > - 
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THEORY OF OVERLOAD GRADIENT CHROMATOGRAPHY 1117 

x;,) = x ; 2 )  = x ; 3 )  = x;4) = & )  
- 

p = 5 ,  p ’ = 3  

o <  ic < 1  

0 -  

FIG. 1. Schematic representation of the aspect of preferential adsorptions among five 
molecular species occurring when Zk=lf+p7 > Xi,)(m) = $*)(m) = &(m) = &(m) = 
$s,(m), p’ = 3 and 0 < K < 1. The histogram shows a pile (Z;.= 1sZ(p’3) of the molecules of the 
five species, and the part of the histogram drawn with oblique lines shows the molecules 

that are adsorbed on the adsorbent surface. 

fulfilled. By applying this numbering method, it can be concluded on the 
basis of the arguments made in both paragraphs [I] and [11] that if 
Xiw=,f+p’3 < $&I), then all the molecules are adsorbed; if Zipp’-,n(p3 > 
X;,,(m), then the adsorption occurs according to priority in the order of 
species 1, 2, .  . . , p. 
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1118 KAWASAKI 

p = 5 ,  p ’ = 3  x:,, 

-i 1 5 1  

x * * x * p = 3  p = 3  p = 3  p * = 4  p = 4  p = 5  

/ c = o  O < / c < l  / c = 1  O < K < l  / c = l  O < K . < l  
o r  o r  

1: 
p *  = 4  p = 5  

tc = o  

FIG. 2. Schematic representation of the aspect of preferential adsorptions among five 
molecular species occurring when > &)(m) > Xi.=,tl(p7 > xi3@) > xid)(m) > ds)(rn) 
(i.e., when p’ = 3) and when several p* and K values are given. A histogram shows a pile 

of the molecules of the five species, and the part of the histograms drawn with 
oblique lines shows the molecules that are adsorbed on the adsorbent surface. 
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THEORY OF OVERLOAD GRADIENT CHROMATOGRAPHY 1119 

(D) Representations of the Adsorption Capacity X;,.,(m) 

The adsorption capacity Gpr,(m) that has been introduced in Section (C) 
can be represented for the respective cases of repulsive (fi > 0), no (fi = 0), 
and attractive (fi < 0) molecular interactions as follows. 

[I] The case of repulsive (fi > 0) interactions: 

1 - kTln(cpm + 1) 
fi 

where 5-l represents the inverse function of 5. 
Proof. When fi > 0, then A(,,, < m:,,) (Eqs. 19 and 20). Let us first give a 

proof of the first equation in Eq. (21). Thus, when 0 6 m < rf+,,), if x < 1, 
then it can be concluded from Eq. (14) that qp,, < 1 since [ lnp$ , (~ ) ] /~~~~ ,  = 
0 (cf. the explanation of Eq. 20). This means that B;,,, = 0 (Eq. 1; cf. Eq. 
9, or that all the p' molecules are adsorbed. It follows from this that the 
state of x = 1 is attainable in the presence of molecular species pf,  and the 
first equation in Eq. (21) is derived. Let us give a proof of the second 
equation in Eq. (21). Thus, it can be concluded from Eq. (14) that, when 
both IC1(,,, < m < m:,,, and Y(,', = 1, then x < 1; this means that [lnpf,.,(x)]/ 
x;,,, = 0 (cf. the argument in Section B) and that the relationship: 

is realized. X;,,,(m) in the second equation in Eq. (21) represents x 
fulfilling Eq. (22). Therefore, if X;,.,(m) in the second equation in Eq. (21) 
is substituted into x in Eq. (14), then qp,, = 1 is obtained. If, in Eq. (14), the 
x value is increased from $,,,(m) while fixing the m value, then 5,') 
increases from unity, and we have B;,', = 1 (Eq. 1; cf. Eq. 5).  To the 
contrary, if, in Eq. (14), the x value is decreased from X;,,,(m) while fixing 
the m value, then Y(p,, decreases from unity, and we have B;p,, = 0 (Eq. 1; cf. 
Eq. 5) .  This means that, if x increases from X;,,?(m), the desorption of pf 
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1120 KAWASAKI 

molecules occurs (since B;,,,, = 1). If x decreases from &,l,(m) due to the 
desorption, however, the adsorption of p' molecules begins (since Bip*) = 
0). It can therefore be concluded that X;p,,(m) in the second equation in Eq. 
(21), in fact, has the physical meaning of the adsorption capacity when 
rh(,,,) < m < mlb3. On the basis of the second equation in Eq. (21), it can be 
shown that, when m + tfqP,) + 0, then d,,,(m) + 1 - 0; this means that 
&,,,(m) given by the second equation in Eq. (21) is continuous with X;p.,(m) 
given by the first equation in Eq. (21), from which it can be concluded 
that dp,,(m) in the second equation in Eq. (21) has the physical meaning 
of the adsorption capacity even when rh(,,,) < m < m&,. It is easy to derive 
the right-hand side term from the intermediate term in the second 
equation in Eq. (21) by using both Eqs. (19) and (20). Finally, let us give a 
proof of the third equation in Eq. (21). Thus, it can be concluded from Eq. 
(14) that, when m > m&,,, then Y(p,, > 1; this means that B;,,,) = 1 (Eq. 1; cf. 
Eq. 5 )  and that the third equation in Eq. (21) is fulfilled. On the basis of 
the second equation in Eq. (21), it can be shown that, when m + m&, - 0, 
then &@I) + + 0; this means that dpr,(m) given by the second equation 
in Eq. (21) is continuous with X;,,@) given by the third equation in Eq. 
(21). It can therefore be concluded that the third equation in Eq. (21) is 
fulfilled even when m > m&). Q.E.D. 

[11] The case of no (4 = 0) interactions: 

x;p+m) = 1 (0 < m < m:pr)) 

(m > rn?P,)) 

(23) 
x;p*,(m) = 0 

Prooj When 4 = 0, then rh(p,, = m?,,,, (Eqs. 19 and 20). It can therefore be 
considered that the case of no interactions can be represented as an 
extreme case of repulsive interactions occurring when the rh(,., value 
approaches the m$t, value. This consideration leads to Eq. (23). Equation 
(23) can also be derived as an extreme case of attractive interactions. 
Q. E. D. 

[III] The case of attractive (4 < 0) interactions: 
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THEORY OF OVERLOAD GRADIENT CHROMATOGRAPHY 1121 

maximum possible p value; or m > rh(,,,)) 

where <-' is an abbreviation for 

or 

(cf. Eq. 21), and p represents molecular species fulfilling both relation- 
ships p > p' and m < rh(b); the molecular adsorption occurs according to 
priority in the order of 1,2,. . . , p. 
Roof: When < 0, then m:,,', < fi(,,,) (Eqs. 19 and 20). On the basis of the 

argument similar to that made for the case of repulsive interactions when 
0 < m < (see paragraph [I]), it can be concluded that, when 0 < m < 
m$,, then X;,,.,(m) = 1. Similarly, on the basis of the argument similar to 
that made for the case of repulsive interactions when m > m:,,., (see 
paragraph [I]), it can be concluded that, when m > fit,,,,), then X;,,.,(m) = 0. 
When m:pv, < m < by substituting <-' into x in Eq. (14), Y(,,,) = 1 is 
obtained (cf. the argument in paragraph [I] for the case of repulsive 
interactions when rh(,,,, < m < m:,,,,). In contrast to the case of repulsive 
interactions, however, if, in Eq. (14), the x value is increased from < - I  

while fixing the m value, then qpr, decreases from unity, and we have B;,,,) 
= 0 (Eq. 1; cf. Eq. 5). If the x value is decreased from <-I while fixing the m 
value, then Y& increases from unity, and we have B&,, = 1 (Eq. 1; cf. Eq. 
5). It can therefore be concluded that, if x exceeds the <-I value, then the 
adsorption of p' molecules continues until x attains the maximum value 
of unity; this means that X;,,',(m) = 1. Unless x exceeds the <-I  value, the 
adsorption of p' molecules does not occur at all; this means that X;,,,)(m) = 
0. By defining molecular species 1, 2,. . . , p so that the priority of the 
adsorption be in this order, species p ( p  = p', p' + 1, p' + 2, . . . ) generally 
exist which fulfill the relationship m < r f q b )  at a given m; the given m 
hlfills the relationship of m:,,,, <,m < rh,,,,, (cf. Fig A3 in Appendix I). This 
means that, if the relationship ZpP.,,fl(p7 2 <-' is fulfilled for at least one of 
all possible p values, then X;,,',(m) = 1. If the relationship ZcP,.,lflc2,p7 < < - I  is 
fulfilled for all possible p values, then X;,,,,(m) = 0; in order for the 
relationship of Z$=,fltp7 < < - I  to be fulfilled for all possible p values, it is 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
5
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1122 KAWASAKI 

sufficient that the same relationship be fulfilled for the maximum 
possible p value. Q.E.D. 

(E) Relative and Approximate Expressions of X;pl,(m) 

Let us introduce relative parameters: 

m 

and 

(29) 

By using both Eqs. (19) and (20), y:p., and p(pv) can be represented as 

and 

respectively. 
We write below the relative expressions x;p',@) of &,,,(m) for the 

respective cases of repulsive, no, and attractive molecular interactions; 
the approximate expression of x;P.)(y) (occurring when the extreme right- 
hand sides of both Eqs. 30 and 31 are realized) is also shown (see the 
second equation in Eq. 32): 
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[I] The case of repulsive (i > 0 or B > 0) interactions: 

x;p*,cv) = 1 (0 < Y < P ( p 4  

( - I [  "'";- r( y ] 
CPtP,, <Y < Y ! P d  

X ; p ' , W  = 0 cv rld 

x;,,,w = 1 (0 Y < YP,,,) 

x;p ' ,cv)  = 0 0, Y$J 

[11] The case of no (i = 0 or E = 0) interactions: 

[III] The case of attractive (fi < 0 or B < 0) interactions: 

(33) 

for at least one of all possible p values) 

@$, < y < ?(,,, and 2 
p' = I  

(34) 

x;,,@) = 0 < 5-l for the maximum 

possible 6 value; or y > $(,,J 

where p represents molecular species fulfilling both relationships p > p' 

In Appendix I, the approximate &,,)Cy)'s in Eqs. (32)-(34) are diagram- 
matically represented assuming that the function ((x) (Eq. 12) can be 
written as ((x) = & (for this assumption, see Discussion Section A). 

and Y < PW,. 
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1124 KAWASAKI 

, 

, 

(F) Representations of B;pn) in Terms of X;p.,(m) 

(35) 

Provided the molecular adsorption occurs according to priority in the 
order of 1, 2 , .  . . , p, the partition Illp,) (where p' = 1, 2 , .  . . , p) can be 
represented in terms of X;p,, as 

P' 

B;P') = 1 [ p'= c I X(p') > x;,.,(m)] 

in which 

In Appendix 11, B~,,'s for both single and three component systems are 
illustrated as functions of y for the three cases of repulsive, no, and 
attractive molecular interactions. For the calculation, the approximate 
expressions of Eqs. (32)-(34) (cf. Eqs. 30 and 31) and Eqs. (37) and (38) 
have been used, where it is assumed that <h) = & (cf. Discussion 
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THEORY OF OVERLOAD GRADIENT CHROMATOGRAPHY 1125 

Section A). In the case of a single component system, the subscript (p') is 
deleted from any parameter. 

(0) Dynamic Part Fundamental Differential Equation in the 
Absence of Longitudinal Diffusion in the Column and the 
Calculation of the Chromatogram on the Basis of the Equation 

For a mixture of components, 1, 2, ..., p, the chromatographic 
behavior of the molecules both in the presence of mutual molecular 
interactions on the adsorbent surface and in the absence of longitudinal 
diffusion in the column can be represented by using simultaneous partial 
differential equations (Eq. 1 in Ref. 6) as 

where 

and 

In Eq. (39), B(,.,(m,X) represents the partition of sample molecules (of the 
chromatographic component p' under consideration) in the mobile 
phase in the vertical section of the column; this is equal to the partition 
B;,$rn,X) occurring in an elementary volume that belongs in the vertical 
section under consideration provided there is no longitudinal diffusion 
in the column (see Eq. 40). (For the reason why B;,,) and B(,,) can be 
represented as functions of m and x, see Section B.) In Eq. (41), g' and g 
represent the slope of the molarity gradient of competing ions in the 
column expressed as the increase in molarity per unit interstitial volume 
and unit length of the column, measured from the outlet to the inlet, 
respectively; L' and L represent the total interstitial volumes and the total 
length of the column, respectively. (In some instances, L' and L represent 
the distance from the inlet of the column of any longitudinal position of 
the column, expressed in units of volume and length, respectively.) s (Eq. 
41), therefore, has a dimension of molarity. 
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1126 KAWASAKI 

The chromatogram,Ap,),, for a component p’ occurring when s is given 
(i.e., when both the slope g of the gradient and the length L of the column 
are given) can be represented as a function of m by using a solution, hp,,, 
of Eq. (39) as 

fulfilling a conservation condition: 

m 

J-if ip . l . s (m) dm = x:,,, (43) 

where mi,, represents the molarity of competing ions at the beginning of 
the molarity gradient introduced at the inlet of the column; xt,,, represents 
the total amount of component p‘ that has initially been loaded on the 
column, expressed as the proportion of the adsorption surfaces in the 
total column that are initially occupied by the molecules of component 
p’. (For details, see Refs. 3 and 6.) 

With ideal molecules fulfilling Eqs. (5)-(7), however, hp,, is uniquely 
determined by yJP$m) (Sections C and D), and yJp,,(rn) is independent ofs. 
This means that X;p,)(m) or qpr) does not directly depend upon g’ or g (Eq. 
41), and that the chromatographic behavior of the molecules can be 
represented by using simultaneous ordinary differential equations that 
can be derived as an extreme form of Eq. (39) occurring wheng’ org tends 
to infinitesimal: 

where 

6s = lim (g’ . L ‘ )  = lim ( g . L )  (45) 
g‘- + 0 g++o 

6s (Eq. 45) has a physical meaning of the molarity difference of 
competing ions between the inlet and the outlet of the total column, being 
constant (with respect to time) with linear gradient chromatography. d(ml 
6s) (Eq. 44) therefore represents the increase in ion molarity measured in 
unit of 6s. B,pr)(rn,~) in Eq. (44) now represents the partition of p’ molecules 
in the mobile phase in the total column. 
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THEORY OF OVERLOAD GRADIENT CHROMATOGRAPHY 1127 

Proof of Eq. (44). The proof is involved in the derivation process of Eq. 
(11) in Ref. 6. Thus, at the inlet (L = 0) of the column where the 
relationship s = 0 is fulfilled (See Eq. 41), the inflow of molecules does 
not occur when once the sample load is finished and a condition is 
fulfilled that when s = 0, then qp,) = 0 (where p’ = 1,2,. . . , p). This means 
that wheng‘ org tends to infinitesimal, the first term on the left-hand side 
of Eq. (39) becomes 

By substituting Eq. (46) into Eq. (39), Eq. (44) can be derived. Q.E.D. 

M = mi,,, then 
Equation (44) can be solved under the initial condition that, when 

where it is assumed that the initial molecular density on the adsorbent 
surfaces in the column is homogeneous or that it decreases mono- 
tonically from the inlet to the outlet of the column (for the exceptional 
case of attractive molecular interactions, see Section H). It is also 
assumed that the relationship 

is fulfilled; Eq. (48) gives a necessary condition for Eq. (47) to be actually 
realized (cf. Eq. 20). The chromatogramJ;,,,, which is independent of s 
(i.e., of both g and L), can be represented as a function of m by using a 
solution, qp,,, of Eq. (44) as 
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1128 KAWASAKI 

fulfilling a conservation condition: 

(H) Theoretical Chromatograms in the Case of a Single 
Component System 

We write below the mathematical expressions of the theoretical 
chromatograms with a single component system obtained on the basis of 
Eqs. (44), (47), and (49) for the cases of repulsive, no, and attractive 
molecular interactions, where the proofs of the expressions are added. 
With a single component system, Eq. (44) represents a single equation, 
and the subscript (p') is deleted from all the mathematical formulas. 

[I] The case of repulsive (4 > 0) interactions: 

< m  <mO) 

f = O  ( m > m o )  

Proof. When m < (e1q-fi'5(x*)1*T - l)/cp, then x* < x'. This is because 
(elq-"'scx*)l/kT - l)/q represents the m value occurring when x' = x*, and, if 
m decreases from this value, x' increases (the case when x* < 1) or x' 
continues to take a constant value of unity (the case when x* = 1 - 0). 
This means that B' = 0 (Eq. 35). It follows from this that B = 0 (Eq. 40), 
that dx = 0 (Eq. 44), that x = x* (Eq. 47), and that f = 0 (Eq. 49), thus 
demonstrating the first equation in Eq. (5 1). When (eh-fi'C(X*)l'kT - l)/q < m 
< mo, then x* > x'. Therefore, from the physical meaning of x', x = x'(m) 
= < - I (  [q - kT In (cpm + l)]/4) (see the second equation in Eq. 21). This, in 
fact, is the solution to Eq. (44) fulfilling the initial condition given by Eq. 
(47) since, when m + (elq-q'c(x')l/kr - l)/cp then x + x*. [It should be 
recalled that when mi, < m < (elQ-q.uX*)j/kT - l)/cp, then x = x*; see above. 
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Here, it should be noted that the parameter B(pt) or B fulfilling Eq. (44) is 
spontaneously determined if the function x(,.)(rn) or x(m) fulfilling the 
initial condition given by Eq. (47) is determined by means of any 
consideration. In fact, B(p,) or B is a function of or x, and the decrease 
of x(,,., occurring with an increase of m or m/& (left-hand side of Eq. 44) 
should represent the amount of p' molecules existing in solution in the 
total column (right-hand side of Eq. 44). This means that the function 
~ ( ~ , ) ( m )  or x(m) as such is the solution to Eq. 44.1 By substituting the 
expression of x obtained above into Eq. (49), the second equation in Eq. 
(51) can be derived. Further, as far as x that has just been obtained is 
concerned, when m + mo, then x + 0. This means that, when rn > mo, 
then the relationship x = 0 holds in general, and that f = 0 (Eq. 49), thus 
demonstrating the third equation in Eq. (51). Q.E.D. 

[11] The case of no (4 = 0) interactions: 

in which 6 represents the delta function. 
Proof. Using the argument similar to that used in the proof of Eq. (51), it 

can be concluded that when m < mO, then x* < x', and that x = x*. When 
rn > mo, it is evident from the physical meaning of x' that x = x' = 0 (see 
the second equation in Eq. 23). Therefore, by using the Heaviside 
function H(x) [defined as H(x) = 0 when x < 0 and as H(x) = 1 when x > 
0; H(x) has a property that dH(x)/& = s(x)], x can be represented as x = 
x* - [ 1 - H(m - mO)], and we have -dx/dm = x* - 6(m - rn'). Therefore, by 
substituting this expression of -dx/dm into Eq. (49), Eq. (52) can be 
derived. [For the fact that the function ~ ( m )  as such can be considered to 
be a solution to Eq. 44, cf. the proof of Eq. 51.1 Q.E.D. 

[III] The case of attractive (i < 0) interactions: 

proof: The case of attractive interactions is different from both cases of 
repulsive and no interactions in that x' depends upon a, i.e., x', in 
general, increases with an increase of (Eq. 24). As a result, the initial 
condition given by Eq. (47) cannot be applied directly, and the 
chromatographic behavior of the molecules is determined by the 
maximal value of x' or x that is locally realized in the vicinity of the 
column inlet at the initial stage of chromatography. The situation can be 
compared with the cases of repulsive and no interactions where the 
chromatographic behavior of the molecules is determined by the mean x' 
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1130 KAWASAKI 

value occurring in the interior of the total column. Thus, usually, the 
sample molecules dissolved in the initial buffer with molarity mi, are 
loaded on the column, and the vicinity of the column inlet is saturated 
with molecules forming the initial band in which the state of 52 = x = 1 is 
realized. When mi, < m < f i ,  the adsorption capacity x' in the interior of 
the initial band conserves the maximal value of unity since 52 = 1 > < - I  

(see the first equation in Eq. 24; it should be noted that the maximum 
possible value of < - I  is unity), and the state of x = x' = 1 continues to be 
realized. When m > f i ,  then x' = 0 (see the second equation in Eq. 24), 
and it can be concluded from the physical meaning of x' that x = x' = 0. 
Now, following the argument similar to that used in the proof of Eq. (52), 
Eq. (53) can be proved; in Eq. (53), x*, of course, represents the initial 
mean value of x occurring in the interior of the total column. Q.E.D. 
Conclusion. In the absence of the energetical molecular interactions (4 

= 0), a chromatographic peak with an infinitesimal width occurs at 
molarity mo of the gradient; both the position and the shape of the peak 
are independent of the sample load (see Eq. 52). In the case of attractive 
interactions (4 < 0) also, a chromatographic peak with an infinitesimal 
width occurs, both the position and the shape of which are independent 
of the sample load (see Eq. 53). The elution molarity, f i ,  of the peak is 
higher than the molarity, mO, occurring in the absence of the energetical 
interactions, however. In the case of repulsive interactions (fi > 0), the 
elution profile is fundamentally different. Thus, a chromatographic peak 
has a finite width comprized in the molarity range between ( e~q-~~scx ' )~ /kr  - 
l)/q and m0 [= (eqlkr - l)/q; see Eq. 191. < tends to zero when x* tends to 
zero (Eq. 15); this means that the molarity at which the chromatographic 
peak begins approaches the molarity at which the peak finishes with a 
decrease of x*,  i.e., with either the increase in the column length or the 
decrease in the amount of the molecules loaded (cf. Figs. A10 and A1 1 in 
Appendix 111). It can be concluded that actual chromatographic features 
that are experienced in many instances resemble the theoretical pre- 
diction obtained in the case of repulsive interactions; a similar con- 
clusion can be attained even taking into account the longitudinal 
diffusion effect in the column. Hence, only the case of repulsive 
interactions will hereafter be treated for the multicomponent system 
(Sections I-K). 

(I) Theoretical Chromatogram in the Case of a Multicomponent 
System with Repulsive Molecular Interactions 

For each component p' (p' = 1, 2,. . . , p) of the sample mixture, the 
theoretical chromatogram can be represented as 
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THEORY OF OVERLOAD GRADIENT CHROMATOGRAPHY 1131 

ell(p')-4.S(Zg:~lXfp"))l/kT - 1 

cp 

where the sum Z~..=,Xfp') is detjned to be zero. 
Proof. When m <, ( e 1 1 y p ' ) - s . ~ 9 . = 1 ~ p ~ 1 ' k T  - l)/cp, then Z$=l&:9 < &,. This is 

because (ellyp')-4's@.%=1~p311/kT - l)/cp represents the m value occurring when 
&) = Z$=l&), and, if m decreases from this value, &,,) increases (the case 
when C$=Ixfd) < 1) or continues to take a constant value of unity (the 
case when Z$,&,-, = 1 - 0). This means that B(p,) = 0 (Eq. 3 9 ,  from 
which it can be derived that d ~ ~ , )  = 0, that Q ~ ~ ,  = %$,,, and that&,, = 0, thus 
demonstrating the first equation in Eq. (54) (cf. the proof of the first 
equation ,in Eq. 51). When (eltl(p')-q'S(zp.=Ixf,.))Jnr - l)/cp < m < 
(e"Vp')-fi 'c@b;IXfp'))llkT - l)/cp, then 

where the first inequality has been derived from the consideration similar 
to that used in the proof of the first equation in Eq. (54). Therefore, from 
the physical meaning of X;p'), we have 
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1132 KAWASAKI 

where the sum Z:.-I&p7 is defined to be zero. On the other hand, the 
relationship 

0'- I 0'-1 c X(P.1 = c Xtp', 
p" I p'= I 

(57) 

is fulfilled. In fact, writing one of 1,2, . . . , p' - 1 as p"' and by using both 
the left-hand side inequality in Eq. (55 )  and the general inequalities 

(see Section C), then 

0'" 0'-  I 

can be derived. The relationship between the extreme left-hand side and 
the extreme right-hand side of Eq. (59) is similar to the relationship 
Z:$=Ixc'p', < x;p',, which has been used to derive the relationship of &pv, = &:,,., 
in the process of the proof of the first equation in Eq. (54). This means 
that &pvv,, = &3., and that Eq. (57) is fulfilled. Therefore, by substituting 
Eq. (57) into Eq. (56'), 

is obtained. Equation (60) is a solution to Eq. (44) fulelling the initial 
condition given by Eq. (47) since, when m + (el'l(p')-fi'S"$=Ixfp91''r - l)/cp, 
then & + xc*,.,. [It should be recalled that when m ,  < m < 
(elq(p,)-fi .@:- I q p 9 ~  - l)/q, then qP,, = xc*,,,. For the fact that Eq. 60 
represents the solution to Eq. 44, cf. the proof of Eq. 51.1 By substituting 
Eq. (60) into Eq. (49), the second equation in Eq. (54) can be derived. 
Further, as far as &p,, given by Eq. (60) is concerned, when m + 
( e ~ ' l ( P 3 - f i ' ~ & ~ ~ ~ p 9 1 " '  - l)/cp, then ape, + 0. This means that, when m > 
(elrl(p')-fi.S(zp:;lqP.31'k' - l)/cp, then the relationship &p,, = 0 holds in general, 
and thatJ,,, = 0 (Eq. 49), thus demonstrating the third equation in Eq. 
(54). Q.E.D. 

Remark. The total chromatogram for a given mixture can be repre- 
sented as a sum of the chromatograms for the respective components 1, 
2,. . . , p (Eq. 54) fulfilling the relationship 
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THEORY OF OVERLOAD GRADIENT CHROMATOGRAPHY 1133 

Equation (61) can be derived in connection with the relationship given by 
Eq. (58). On the basis of both Eqs. (54) and (61), it can be understood that 
the total chromatogram is composed of two types of interval: (a) 

and (b) 

and 

are defined to be -a and m, respectively. In interval (a),Jp.,, in general, 
takes positive values whereas, in interval (b),Jp,) is always equal to 0. 
Further, since x1;),.$), . . . , actually have finite values, interval (a), in 
general, has a finite width. As far as interval (b) (except those formed 
outside the total chromatogram) is concerned, however, it has a finite 
width only when T)(,.) > q(p,+l); when q(p,) = T)(~ ,+~) ,  the width of interval (b) is 
infinitesimal. In this instance the chromatogram formed by component 
p' is identical with that formed by both component p' and p' + 1 provided 
that the xt,., value with the former chromatogram is equal to the xc*,., + 
y$+,) value with the latter one. This situation is diagrammatically shown 
in Figs. A10 and A12 or Figs. A1 1 and A13 in Appendix 111. 

(J) The Case When the Distribution of the Molecular Components 
Is Continuous 

When the distribution of the molecular components is continuous, let 
us currently represent q(l), q2), . . . , qp) by using a variable 7. We call F ( 7 )  
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1134 KAWASAKI 

the normalized distribution function of q fulfilling the relationship 

and x* the total molecular density, Z$=,&, on the adsorbent. By using 
these symbols, the total chromatogram f(m) [= CP,=cfp3(m)] can be 
represented as 

in which 

Proof. On the basis of the argument made in Section I, it can be 
understood that the one-to-one correspondence holds between the two 
distributions off(m) and F(q) .  Therefore, taking into account both Eqs. 
(50) and (62), Eq. (63) can be derived. It is now sufficient to give a proof of 
Eq. (64). Thus, when the distribution of the molecular component is 
continuous with a finite x* value, the widths of both intervals (a) and (b) 
(see Remark in Section I) are infinitesimal, and we have relationships 

from which Eq. (64) can be derived. Q.E.D. 
Provided 

both Eqs. (63) and (64) lead to Eq. (54). 

represented as 
ProoJ By using an infinitesimal positive constant E, Eq. (66) can be 
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THEORY OF OVERLOAD GRADIENT CHROMATOGRAPHY 

F(q)  = 0 (in the other range of 7) 

Therefore, when 

Eq. (64) can be rewritten as 

1135 

(67) 

from which 

can be derived. By substituting both the first equation in Eq. (67) and Eq. 
(70) into Eq. (63), 

1 q - kTln(cprn + 1) 
drn fl 

is obtained. On the other hand, the molarity range fulfilling Eq. (68) can 
be estimated by using Eq. (69): 

el'l(p,)-~-4 .C(xg:=l~fp-))llkT - 1 e"l(p')-4.S(Zp:;fXfp"))llkT - 1 
< m <  (72) 

cp cp 

At the limit of E --* 0, Eq. (72) reduces to 

and 7 in Eq. (71) can be rewritten as qP,) (cf. Eq. 68). It is also possible to 
writef(m) in Eq. (71) asJp,), and Eq. (71) and the molarity range given by 
Eq. (73) coincide with the second equation in Eq. (54) and the molarity 
range in which this equation holds, respectively. [In the right-hand side 
inequality limiting the molarity range in which the second equation in 
Eq. 54 holds, the equality is not involved in contrast to the right-hand side 
inequality in Eq. 73 to which an equality is added. It is possible, however, 
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KAWASAKI 1136 

to add an equality to the former inequality since fc I in Eq. 54 (as a 
function of m )  is continuous at m = ( e [ l ( p ' ) - " . ( " g : = l ~ t p ~ ~ ~ ~  - 1)/cp.] Unless 
Eq. (73) or (68) is fulfilled, then F(7)  = 0 (the second equation in Eq. 67), 
and, from Eq. (63), 

is derived. Therefore, writingfc,., instead off(m) in Eq. (74), the first and 
the third equations in Eq. (54) are obtained. Q.E.D. 

(K) Relative and Approximate Expressions of f(pt) and I (m) 

rewritten as 
By using relative parameters introduced in Section E, Eq. (54) can be 

where 

Equation (75) can approximately be represented as 
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THEORY OF OVERLOAD GRADIENT CHROMATOGRAPHY 

W(p7 - 6 * 5( Y p'= 1 xt,.,)] 

Equations (63) and (64) can relatively be written as 

and 

respectively, where w is the current expression of yI), yZ), . . . , w ( ~ , .  
Equation (79) can approximately be represented as 

In Appendix 111, approximatef,,,,'s calculated by using Eq. (77) under 
two assumptions of ( (x )  = x and ( (x )  = \Tx are diagrammatically 
represented. f (m)'s  for several types of continuous distribution, F(w), 
calculated by using both Eqs. (78) and (80) under assumption of &t) = 
& are also depicted in Appendix 111. (For details, see the Discussion 
Section.) 

DISCUSSION 

(A) The State of the Molecules on the Adsorbent Surface and 
Two Possible Forms of Function ( ( x )  

At least with gradient chromatography of the competitive type it can, in 
general, be assumed that the mutually superimposed state of molecules is 
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1138 KAWASAKI 

hardly realizable on the adsorbent surfaces in the column when they are 
adsorbed. With this chromatography the adsorption energy per molecule 
is generally large enough for the value of the parameter B;pr) or B(p,, to be 
virtually equal to zero when the molarity of competing ions is equal to the 
initial value mi,. As a result, the molecule is almost completely retained 
on the column before the gradient begins. Under this situation, provided 
the molecule under consideration is partially superimposed on another 
molecule on the adsorbent surface, the loss of the interaction energy of 
the former molecule with the adsorbent surface occumng due to the 
steric hindrance provoked by the latter molecule should also be large. It 
can, in general, be concluded (see below) that, provided the total 
adsorption energy per molecule is large enough for it to be retained on 
the column before the gradient is applied, the loss of the adsorption 
energy per molecule occumng due to the superposition on another 
molecule is much more important than the gain of entropy occurring due 
to the increase in the number of the adsorption configuration; this 
increase occurs by allowing the superimposed state. As a result, the 
mutually superimposed state of molecules is hardly realizable. Thus, in 
Appendix I of Ref. 7, the above was quantitatively examined on the basis 
of a simple statistical mechanical consideration by using elongated 
model molecules that are much longer than the interdistances among the 
neighboring adsorbing sites on the adsorbent surface; the molecules are 
more or less rigid but sufficiently flexible to attach themselves on the 
adsorbent surface when they have to pass over other molecules that have 
already been adsorbed. It was concluded (Ref. 7, Appendix I) that the 
superposition state can almost never be realized with these molecules. 
Since these molecules would represent the type that can most easily be 
superimposed on one another, it can, in general, be assumed that the 
mutually superimposed state of molecules is hardly realizable on the 
adsorbent surfaces in the column. 

As far as molecules with an asymmetrical shape (such as those 
represented by a rod) are concerned, it can, in general, be assumed that 
the molecules are arranged in parallel with one another on the adsorbent 
surface avoiding the mutually superimposed state, provided that the 
molecular density on the adsorbent surface is high enough.* With this 
adsorption manner, the energetic interaction among molecules on the 

*It is tacitly assumed that a molecule is adsorbed on the adsorbent surface by using a side 
of the rod; the probability that the rod is adsorbed in such a way that the main axis of the 
rod is perpendicular to the adsorbent surface is negligibly small. 
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adsorbent surface would occur mainly through the side of the rod (which 
occupies the major part of the total surfaces of the rod), and two models 
can be proposed for the adsorbed phase of the molecules which is 
realized on the adsorbent surface. In the first model (called the 
amorphous phase model), the molecules are situated at random on the 
adsorbent surface and maintain parallel orientation with one another. In 
the second model (called the quasi-crystalline phase model), the 
positions of the molecules (arranged parallel with one another) are 
restricted to one another due to the energetic interaction among them 
through the side of the rod. [In the argument in Ref. 7, Appendix I, for the 
possibility of the occurrence of the mutually superimposed state of the 
molecules on the adsorbent surface (see above), account is not taken of 
the quasi-crystalline phase model, and only the amorphous phase model 
is considered; this is because, in this argument, the effect of the energetic 
molecular interaction is neglected in both the superposition and 
nonsuperposition states of the molecules. It can be assumed, however, 
that the superposition state is unrealizable from a practical point of view 
even in the presence of energetic molecular interactions since the 
possibility of the occurrence of the superposition state is extremely small 
in the absence of the energetic molecular interaction; see Ref. 7, 
Appendix I.] 

In general, the mutual interaction energy E& or 6 (see Eq. 12) would be 
approximately proportional to the molecular density occurring in the 
direction perpendicular to the main axis of a given molecule. With the 
amorphous phase model, this density can be estimated to be x on the 
basis of a Bragg-Williams approximation for the distribution of the 
molecules on the adsorbent surface, or we have 

With the quasi-crystalline phase model, the molecular density in the 
perpendicular direction of a rod can be estimated to be of the order of & 
since the avid positions of the molecules are not determined at random; 
the rearrangement of the random positions of the molecules occurs on 
the adsorbent surface due to the energetic molecular interaction (see 
above). Hence, we have 

*In Refs 7-10, Eq. (82) is simply assumed without justification. Detailed arguments on 
Eq. (82) will be made in a subsequent publication (T. Kawasaki and M. Niikura, "Overload 
Quasi-Static Linear Gradient Chromatography: Theory versus Hydoxyapatite High- 
Performance Liquid Chromatography," Sep. Sci. Technol.. In Press). 
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Both amorphous and quasi-crystalline phases can be considered even 
in the case of molecules with a symmetrical shape (such as those 
represented by a sphere). For these molecules, Eq. (81) seems to be 
realizable independent of the type of the adsorbed phase of the molecules 
since the energetic interaction can be assumed to occur in any direction 
around a given molecule. In the special case when the arrangement of the 
adsorption sites on the adsorbent surface is highly asymmetric (with a 
coordination number, z, equal to 1 or 2; cf. Assumption 1 in Ref. 11, 
Theoretical Section A), Eq. (82) might be realizable with the quasi- 
crystalline phase, however. 

(B) The Shape of the Theoretical Chromatogram and the 
Relationship with the Experiment 

Typical chromatograms calculated by using Eq. (77) or both Eqs. (78) 
and (80) on the basis of both the amorphous (Eq. 81) and the quasi- 
crystalline phase (Eq. 82) model are illustrated in Appendix 111. Thus, 
Figs. A10 and A1 1 depict chromatograms for single component systems 
obtained by using Eqs. (81) and (82), giving a rectangle and a right-angled 
triangle diagram, respectively. 

Figures A12 and A13 are chromatograms for two component systems 
with the identical q,.) or yP,, value obtained by using Eqs. (81) and (82), 
respectively. It can be seen that the total shapes of the two component 
chromatograms (Figs. A12 and A13) are identical with those of the single 
component systmes (Figs. A10 and All); the x* value with the single 
component chromatograms is equal to the %:, + %;, value with the two 
component chromatograms, provided B is constant (for details, see the 
explanation of the figures in Appendix 111). In the case of a more than 
two component system with w(,) = w(*) = . . = y,, in which Eq. (81) is 
fulfilled, rectangles that keep in contact with one another continue on the 
left-hand side of the two component chromatogram (Fig. A12), com- 
pleting as a whole a rectangular chromatogram. In the case of the 
corresponding more than two component system in which Eq. (82) is 
fulfilled instead of Eq. (81), rectangles are replaced by trapezoids (cf. Fig. 
A13), completing as a whole a total chromatogram of right-angled 
triangle. 

Figures A14 and A15 illustrate chromatograms for two component 
systems with different q,.) or w(,,, values obtained by using Eqs. (81) and 
(82), respectively. It can be seen that, provided the chromatograms 
concerning the respective components of the mixtures approach one 
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another to keep in contact, the total shapes of the two component 
chromatograms (Figs. A14 and A15) will be identical with those of the 
single component systems (Figs. A10 and All); the x* value with the 
single component chromatograms is equal to the R$ + XC:, value with the 
two component chromatograms, provided B is constant (for details, see 
the explanation of the figures in Appendix 111). In the case of a more than 
two component system with w ( ~ )  > w ( ~ )  > * * > yP) in which Eq. (81) is 
fulfilled, rectangles that are separated from one another are present on 
the left-hand side of the two component chromatogram (Fig. A14), 
completing as a whole a rectangular total chromatogram provided the 
respective rectangles approach one another to keep in contact. In the case 
of the corresponding more than two component system in which Eq. (82) 
is fulfilled instead of Eq. (81), rectangles are replaced by trapezoids (cf. 
Fig. AlS), completing as a whole a total chromatogram of a right-angled 
triangle provided the respective trapezoids and a triangle approach one 
another to keep in contact. 

Figure A16 illustrates several types of continuous distribution, F(w), of 
molecular species with different w values. Parts(a)-(e) of Fig. A17 show 
the results of the calculation of the chromatograms for the distributions 
shown in Parts(a)-(e) of Fig. A16, respectively; the calculation has been 
done only for the case when Eq. (82) is fulfilled. When x * 4  or under 
condition of infinitesimal sample load, all the chromatograms in Fig. 
A17 tend toward the patterns shown in Fig. A16. 

It can now be understood that when Eq. (81) holds, a rectangular 
chromatogram is obtained in the case of a signle component system (Fig. 
AlO), and, with multicomponent systems, the shape of the total chroma- 
togram tends to become a rectangle as a whole due to repulsive 
interactions among molecules (Figs. A12 and A14). When Eq. (82) holds, 
a chromatogram of a right-angled triangle is obtained in the case of a 
signle component system (Fig. A1 l), and, with multicomponent systems, 
the shape of the total chromatogram tends to become a right-angled 
triangle as a whole (Figs. A13, A15, and A17). Chromatograms with a 
shape close to a right-angled triangle are often experienced under 
overload condition with gradient chromatography; this implies that it is 
Eq. (82) rather than Eq. (81) that is realized in many actual instances. Of 
course, this is a deduction based upon the ideal molecular model of 
infinite dimensions (with properties given by Eqs. 5-7); it is necessary to 
reexamine both Eqs. (81) and (82) in detail by using molecular models 
with finite dimensions. 
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1 -  

p ' +  1 

0 -  
Y( 0 p ' +  1) 

Y 

FIG. A2. Approximate xip#) and xip,+l) as functions ofy when the energetical interactions are 
absent (B = 0) and when w ( ~ , )  > w(,,,+~). These have been drawn on the basis of Eq. (33), 
taking into account both Eqs. (30) and (31). (Prototypes of this figure can be found in Refs. 7 

and 8.) 
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APPENDIX II: DIAGRAMMATICAL REPRESENTATIONS OF 
APPROXIMATE B’ AND B{p,l 

1 

B ’  

0.5 

0 

0 0.5 1 

Y 

nci. A4. Approximate B’ as a function ofy for several values of 52 when repulsive molecular 
interactions are present in a single component system. For the calculation, the approximate 
expression of Eq. (32) (cf. Eqs. 30 and 31) and Eqs. (37) and (38) have been used, assuming 
that 5 0  = fi, that w = 1, and that E = 0.5. (For collagen molecules, it can be estimated 

that E 0 0.2; see Ref. 17.) (Reproduced with modifications from Ref. 7.) 
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L a = o  

9 = 2  + 

.1 

O < Q S l -  

\1 
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0 0.5 1 

Y 

Rc. A5. As Fig. A4 when the energetical molecular interactions are absent in a single 
component system. This has been calculated by using the approximate expression of Eq. 
(33) (cf. Eqs. 30 and 31) and Eqs. (37) and (38). assuming that w = 1.  (Reproduced with 

modifications from Ref. 7.) 
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1 -  

B ’  

0.5 - 

0 -  
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n =2 

9=1 

P = 0.5 

i I  
1 1.5 

Y 
FIG. A6. As Fig. A4 when attractive molecular interactions are present in a single 
component system. For the calculation, the approximate expression of Eq. (34) (cf. Eqs. 30 
and 31) and Eqs. (37) and (38) have been used, assuming that 5 0  = fi that w = 1, and that 

S = -0.5. (Reproduced with modifications from Ref. 7.) 
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APPENDIX 111: DIAGRAMMATICAL REPRESENTATIONS OF 
APPROXIMATE CHROMATOGRAM f(d16f) or r(v) WHEN REPULSIVE 

MOLECULAR INTERACTIONS ARE PRESENT 
(cf. Discussion Section) 

FIG. A10. Approximatelas a function ofy  for a single component system when <(x) = x. 
This has been calculated by using Eq. (77) assuming: B * x *  = 0.5 and w = 1. 

0 1- B f l  1 

FIG. A1 1. As Fig. A10 when <or) = &where it has been assumed: Ef i  = 0.5 and w = 1. 
(Reproduced from Ref. 10.) 
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1 T 

1 

0 
f 

1-  E ’ X ( , )  1 

FIG. A12. Approximate&) o r f a s  a function of y for a two component system with the 
identical q(,,#) or w(,,,) value when {(x) = x. This has been calculated by using Eq. (77) 
assuming: E . wi) + a)) = 0.5, = Xtz,, and w(1) = w(2) = 1. It can be seen that the shape of 
the total chromatogram (being a rectangle) is idenbcal with that of the chromatogram for a 
single component system [Fig. A10 cf. “Remark” in Theoretical Section (I)]. In the case of a 
more than two component system with W ( I )  = w(2) = * . . = w(,,), rectangles that keep in 
contact with one another continue on the left-hand side of the two component chromato- 

gram, completing as a whole a rectangular total chromatogram. 

f 

2 

0 

0 

FIG. A13. As Fig. A12 when {(x) = fiwhere it has been assumed: Ed@$ = 0.5, f l )  = 
?2,, and w(1) =. w ( ~ )  = 1. It can be seen that the shape of the total chromatogram (being a 
nght-angled tnangle) is identical with that of the chromatogram for a single component 
system [Fig. Al l ;  cf. “Remark” in Theoretical Section (I)]. In the case of a more than two 
component system with w(,) = w ( ~ )  7 . * * = w(,,), trapezoids that keep in contact with one 
another continue on the left-hand side of the two component chromatogram, completing 

as a whole a total chromatogram of right-angled triangle. (Reproduced from Ref. 10.) 
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1 

Y 

1 * 1- E * x  (1) 

F~G. A14. Approximate&,) or/as a function ofy for a two component system with different 
q(pr) or ~ ( ~ 0 )  values when (01) = x. This has been calculated by using Eq. (77) assuming: 
B. 6$) + @2$ = 0.5, @I).= @2), w(1) = 1, and yZ) = 0.9. It can be seen that, provided the 
chromatograms concerning the respective components of the mixture approach one 
another to keep in contact, the shaep of the total chromatogram (being a rectangle) will be 
identical with that of the chromatogram for a single component system (Fig. A10). In the 
case of a more than two component system with yI) > w ( ~ )  > . . 1 > yP). rectangles that are 
separated from one another are present on the left-hand side of the two component 
chromatogram, completing as a whole a rectangular total chromatogram provided the 

respective rectangles approach one another to keep in contact. 
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f 

........._._...__. I 

FIG. A15. As Fig. A14 when {w = d i  where it has been assumed: = 0.5, gl) = 
@$, w(~) = 1, and = 0.9. It can be seen that, provided the chromatograms concerning the 
respective components of the mixture approach one another to keep in contact, the shape of 
the total chromatogram (being a right-angled triangle) will be identical with that of the 
chromatogram for a single component system (Fig. All). In the case of a more than two 
component system with w(,) > w(2) > . * * > w(,,,, trapezoids that are separated from one 
another are present on the left-hand side of the two component chromatogram, completing 
as a whole a total chromatogram of right-angled triangle provided the respective trapezoids 

and a triangle approach one another to keep in contact. (Reproduced from Ref. 10.) 
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F 

t 

0 0 .5  1 

FIG. A16. Several types of continuous distributions, F(w), of molecular species with different 
w values. (Reproduced from Ref. ZO.) 
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2 -  

1157 

- x '  = 0 . 2 5  

- 

( a )  

2 -  z ' = 1  - 
0 '  I I I 

2 -  

0 1  I 1 

2 -  z' =0.25 

0 1  I I 

z' =0.5 
- 

0 0.5 1 

*Y 

( b  

z* = I  

0 zw 
z ' = 0 . 5 1  

0 0.5 1 

* Y  

0 0.5 1 
+ Y  

0 0.5 1 

+ Y  

0 0.5 1 

--+Y 

FIG. A17. Parts (a)-(e) represent chromatograms with S = 0.5 and different X* values for the 
mixtures as shown in Fig. A16 (a)-(e), respectively. These have been calculated by using 
both Eqs. (78) and (80) for the case when {oc) = fi it is assumed that yin = 0. When x*+O 
or under condition of infinitesimal sample load, all the chromatograms tend toward the 

patterns shown in Fig. A16. (Reproduced with modifications from Ref. 10.) 
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